Secure Two-party Threshold
ECDSA from ECDSA Assumptions

Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat
Northeastern University

Elliptic Curve Digital Signature Algorithm

* Digital Signature Algorithm with elliptic curves
* Smaller signature (512 bits) and key sizes (256-bit)
 Security proof in “generic group model”

* Used pervasively in:
* TLS
* DNSSEC
 Cryptocurrencies (Bitcoin, Ethereum, ...)

Why Threshold Signatures?

e ¢

=

&
=

Single Point of Failure for Signer

(orv Ve’
Ay ¢ e

Distribute Signing Key Among Many Devices

.
=
" &
[
SN
)

Multi-Signature
n parties Pkn, Skn | @ pka, sk;

Each party has their own key pair

//V\\
To signh a message, each party @ @@@ @\
produces a signature under their

/
puinC key PRn—1,Skp—1 %} pkas, sk

Signature: o4, 05, ..., 0y pk,, sk,

Why not Multi-Signatures?

° H Ig h b an d WI d t h E;ﬁ;izzxs;eg;nrli;oijzsers Lose Millions in a

. Multi-Sig Hack
* Need to produce n signatures T B con

[J IVI aj O r b u gs i n i m p I e m e n ta t i O n S t ryi n g On July 19 the ethereum community was warned that the Parity client version 1.5

and above contained a critical vulnerability in the multi-signature wallet feature.
Further, a group of multi-signature “black hat exploiters” has managed to drain

t O re d u Ce b a n d W i d t h 150,000 ether from multi-sig wallets and ICO projects.

* Participating signers publicly known A Postmortem on the
Parity Multi-Sig Library
Self-Destruct

On Monday November 6th 2017 02:33:47 PM UTC, a vulnerability in the “library”
smart contract code, deployed as a shared component of all Parity multi-sig
wallets deployed after July 20th 2017, was found by an anonymous user. The
user decided to exploit this vulnerability and made himself the “owner” of the
library contract. Subsequently, the user destructed this component. Since Parity
multi-signature wallets depend on this component, this action blocked funds in
587 wallets holding a total amount of 513,774.16 Ether as well as additional
tokens. Subsequent to destroying the library component, someone (purportedly
this same user) posted under the username of “devops199” issue #6995 that

prompted our investigation into this matter.

t-of-n Threshold Signature Schemek)
pK, Skq

. pk, sky G2\ pk, sk,
n parties = @ /772
/\\) @

Jointly compute a single public key

Each party has a share of the secret key @
| w\

‘ 7
t-partles needed to generate new o %)
signatures ’

Signature: o pk, sk,

2-of-n Threshold Signature Scheme

@ @

2-of-n Threshold Signature Scheme

Participation of 2 parties needed to generate new signatures

2-of-n Threshold Signature Scheme

@ @ .

Single users cannot forge a signature

2-of-n Threshold Signature Scheme

@ @ .

Single users cannot forge a signature

2-of-n Threshold Signature Scheme

@ @ .

Single users cannot forge a signature

Handling Corruptions

24
o ¢

‘@

Handling Corruptions

\

Adversary can interact with parties

Handling Corruptions

\

Adversary can interact with parties

Handling Corruptions

\

Adversary can interact with parties

Handling Corruptions

724\

'

O o B X

Adversary still shouldn’t be able to forge a signature

Security Model

Real |deal
@ = @ =
@ /) @ y 7 \ '%\

Bl

N\

&“\\\

{

Any Adv in the real world can be mapped to one in the ideal world

Note: Our functionality

ECDSA FU ﬂCtiQna“ty concretely implements the
ECDSA algorithm and is not a

signature algorithm

@\

S

ECDSA Functionality

init

&

ECDSA Functionality

2
pk

ECDSA Functionality

@\

ECDSA Functionality

€3
&,

\

Fos

ECDSA Functionality

Sig

&

\

Fos

(Preview) Prior Works on Threshold ECDSA

e Some not proven via real/ideal
* Some have long complex, setup (several minutes), semi-honest

* All need additional assumptions

This Work

* Maliciously secure threshold ECDSA
e 2-round with relaxed definition
* Maliciously secure multiplication with external checks

* No additional assumptions
* Threshold ECDSA scheme from only ECDSA

* Improved efficiency
*~3 ms to sign

* Open source implementation in Rust

This Talk

 2-0f-2 Threshold ECDSA
* Extended to 2-of-n in paper

* Optimizations

Threshold Schnorr

SchnorrSign(sk, m):
Sample instance key < Z,
R=Fk-G
e =H(R || m)
o=k—sk-e
Output (o, e)

Threshold Schnorr

SchnorrSign(sk, m):
—> Sample instance key & « Z,
—R=k-G
—> € = H(R | 171)
—~o0=k—sk-e

Output (o, e)

k,+k, —(sk, +sk,)-e

Threshold Schnorr

SchnorrSign(sk, m):
Sample instance key < Z,
R=Fk-G
e =H(R || m)
—>o0o=k—sk-e

Output (o, e)

Threshold Schnorr

SchnorrSign(sk, m):
Sample instance key < Z,
R=Fk-G
e =H(R || m)
—>o0o=k—sk-e

Output (o, e)

= sk, + sk,
=ka+kb
R:kaG‘l‘kbG
0O — - e
+k,—(+sky)-e

//77/ sk = sk, + sk, G \
Threshold Schnorr @\\) = ko + @

R=lky-G+bk, G

SchnorrSign(sk, m): ka ky,
Sample instance key r « Z
e=H(R ||l m) i
SZkESkie k,+k, —(sk, +sk,) e
—> Output (o, e (\
o, =k, —sk,-e o, =k, —sky, - e
g, S

o =0, + 0y

What makes ECDSA difficult?

SchnorrSign(sk, m): ECDSASign(sk, m):
Sample instance key < Z, Sample instance key « Zj
R=FkK-G R=Fk-G
e=H(R |l m) e = H(m)
0=K—5K-¢€ o="+=—"1,

Output (o, e) Output (o, 1;)

What makes ECDSA difficult?

SchnorrSign(sk, m): ECDSASign(sk, m):
Sample instance key < Z, Sample instance key « Zj
R=FkK-G R=Fk-G
e=H(R ||l m) e = H(m)
0 =1t —s5K-e a=£+—-rx

Output (o, e) Output (o, 1)

What makes ECDSA difficult?

SchnorrSign(sk, m): ECDSASign(sk, m):
Sample instance key < Z, Sample instance key & « Zj
R=FkK-G
e=H(R || m)
o=k—sk-e
Output (g, €) (Output (o, 13)

Need Shaves of
Kk ond K

Prior Approaches

Gennaro-Goldfeder-Narayananl6
Lindell17
Boneh-Gennaro-Goldfeder17

1. Multiplicative shares of the
secret and instance keys

k:ka'kb Sk=Ska'Skb

%- (Him) +sk-n,)

Prior Approaches

Gennaro-Goldfeder-Narayananl6
Lindell17
Boneh-Gennaro-Goldfeder17

1. Multiplicative shares of the
secret and instance keys

2. Use additively homomorphic
Paillier encryption

:ka'kb Sk=Ska'Skb

1
Kq

1- (Hm) +sk-n)

{

1 U N sk

Paillier encryption

Prior Approaches

GGN16, BGG17

e t-of-n, 4 rounds (reduced from 6 rounds)

* Expensive setup; not implemented or not reported
 Additional assumptions:

* Decisional Composite Residuosity
 Strong RSA

Lindell17

* Only 2-0f-2, 4 rounds

e Additional assumptions:
* Decisional Composite Residuosity
 Paillier-EC (new, construction-specific)

Our Approach to Threshold Signing

"y
sk,

h = Ska . Skb *

@\
=

sk,

Our Approach to Threshold Signing

k =k, - k; $

Kq

Q‘S\
=

sk,

Our Approach to Threshold Signing

y 77
@ LHmy+ S
sk

“a L1 e, e sk
ko Ky 07 T ke Ky

Tx

Q‘S\
=

sk,

Our Approach to Threshold Signing

_
) Hm) 4
s;{aa J

1 Hm) + sk,
ka m) ka rx

Q‘g\\
=

Our Approach to Threshold Signing

y 77
@ LHmy+ S
sk,

Our Approach to Threshold Signing

//7/’ \ 1 1 sk, sk, G\
) P H(m) + P Ty |
sk

MUL sk,
k, a B k,

A —

>ty

ta+tb=a',8

Our Approach to Threshold Signing

7

a
Kq

1 1 sk, sk G\
RPN &
ka kb ka kb

1 MUL 1 sky,
E——-) e—g k,
tc(ll) __9tl(91)

1 1
OO

b T ke Ky

Our Approach to Threshold Signing

<

a
Kq

e 4t))-H(m)+ T
e a b

1 MUL 1

kg — “ky

tc(ll) . tlgl)

(o 11
a b ka kb

Our Approach to Threshold Signing

7 k, sk G
a b

Sﬁa 1 MUL_ 1 skj
a E — «— E ky
tc(ll) s tlg1)
sk, MUL sk,
ka N kb
t((lz) —_— tng)
Ska Skb

A

ke Ky

Our Approach to Threshold Signing

Z /
%) (¢ + t9) - Hem) + (62 4 7)) -, @
SKa 1 MUL 1 sk,
ka E — A — E kb
£ e— — 1"
K MUL sk
ka —_—> < kb
t(gz) -— — tng)

t(z) + t(z) _ Ska . Skb
a b ka kb

Our Approach to Threshold Signing

%) (¢ 4+) HOm) + (2 + 7)) - @
7

sk,
Kp

MU 1

T kp

e—kb

— t(Z)

(Y Hm) + 7 oy (Y Hm) + 67

(Semi-honest)

[Gilboa99] Multiplication by Oblivious Transfer
MUL

ta — — Pe _
A 2| e TloT P [< 3
tA —_) (“"Pl
F«l-d_—'; OT ._———>'A+A.P'
kA — OT — P
PR Y T e Y

of OTs proportional to security parameter
Efficient with OT extension (symmetric key operations)

Skeleton Protocol

)

sk,
kq

pk = sk, - sk, -G

R = ka . kb . G'
1 MUL 1
T —| il Eh [e— 7
¢ % f:\:i;nk-p. b
(1) ta —) : [(1)
ta <——- k,+o\—"t.,+d\-p. —_— tb
skq MUL sk,
k a k,:i :g:n\-p. < k b
;t,f::k;m'p.
A — . Pn
th) Q’- *,,.fd. "" katdpa ‘—9 th)
(1)
Oq t,

Oa = t(gl) -H(m) + téz) C Ty

Hardening for Malicious Security
v pk = sk, - sk, - G

%) R=k, -k, -G @

1 MUL 1
sKq s e [e— T -
k a “ k,f::t;wk-p. b kb
¢ D | aoer kg [— (D
skq MUL sk,
k k,::x:tp.:n\'p. < k
! =TT = b
t@ | st — (@
e T t(gl) H(m) + tg‘Z) T Oq t,S” -H(m) + tz(gz) C Ty

Hardening for Malicious Security
pk = sk, - sk, - G

@

sk,
Kq

1. Maliciously secure
multiplication

1

R=ka'kb‘G

ke —

e

sk,

6——-

Kq

£

o, =t Hm) +t? -7,

—

L MUD)

A — o~ P

*'4,'"\'?-
A —) P

*,i‘d ——7 *—A*’\'P-

s (=il EANRS

(——-kb

(D)

%a e Pe

*h+ﬁA‘f°\'P'
ta — A

*’4,“ —" *—A*’\'Pn

ta —)| Pn
**‘*dx -——7 *.A‘fd\'P.

Oq

Hardening for Malicious Security
pk = sk, - sk, - G

’ MUL |
Ska L _'-:i e 6 Skb
k, *-* et I
b

£ ,;:::, o |—> ¢V
1. Maliciously secure
multiplication MUL_ SKp
p . — ,t:__'i tA-fo kb
2. Enforce input **;-*i .
consistency) | szt tl(92>
o, = tc(ll) -H(m) + tC(LZ) C Ty o, tlgl) -H(m) + tlgz) ‘ Ty

>

Hardening for Malicious Security

Malicious Multiplication Input Consistency

1. Checks per OT
_ * Y probability getting caught
%‘ oer OT Verify output is an ECDSA
) 2. High entropy encoding scheme signature
 Bob encodes his input into
multiplication

@ ' A new consistency check

Assumptions Needed

Malicious Multiplication

1. Checks per OT

Input Consistency

Verify output is an ECDSA

2. High entropy encoding scheme signature

statisticalin ROM

\

ECDSA is a sighature
scheme

A new consistency check

CDH implied by generic
group model, which is
what ECDSA is proven in

Computational Diffie-
Hellman

— \/

Security Against Malicious Bob

@) -t

(1)
t, (2) (2) _ 22
a

Q‘S\
=

(D
(2)

Security Against Malicious Bob

@) -t

(1)
t, (2) (2) _ 22
a

Q‘S\
=

(D
(2)

Security Against Malicious Bob

/”77/@%\) (o1

| a b

¢ (D @ , .@). _() (
) (ta + ¢, > G =\ 7 /)

Security Against Malicious Bob

7 1
7)) -t
(D sk
¢ @, .@)./2 _
/@ (t“ T > G_(_>6

Security Against Malicious Bob

@) -t
(1) 1
Z‘Em (t‘(‘Z) T tlg”) G=7 Pk

Security Against Malicious Bob

@) et
(1) 1
Z‘Em (t‘(‘Z) T tlg”) G =7 Pk

Security Against Malicious Bob

@ ICETDR LS N &
) @, ,.@).~ _1 =
j:ﬁg) (taz +tb2> G __'Pk tlgm

tp

Security Against Malicious Bob

@ BCETDR SR N &
= @ ,@)./2 _1 %
NG +i7) G =7-pk e

(tél) + tg“) .k = (to(f) + tISZ)) .G

Security Against Malicious Bob

' (té” + t,§1>) .k = (tc(f) + t,§2>) e
)
g _

(Y pk =t 6=t 61tV pk

Q‘g&\

tY

t'?

Security Against Malicious Bob

@

1 MUL 1 dJ
k_ —_— *'f;: i:mp. \ S k_ + 6 f \~
a e Tl A b |
ta — E P 1
¢ ooy, |—> (D e
(2)
w,,m_1 0 b
tg "+t =7+
a b k kg

(D pk—tP =176 -t pk+

Computing this is as hard as CDH! /

Security Against Malicious Bob

o)t pk—tP =076 -V pk
£
e___r__

@\

tY

t'?

Consistency Check Optimization

o) otV epk—tP =076 -t" pk

t?)

EnCF (O-a) _\:

Q‘g&\

tY

t'?

Z Protocol N
@\\) s D @

Instance Key Exchange b e C
Ska e———-s b — “p Skb
ka R’ — k& . Db 9 k
- b
- J
é Multiplication A

e Bob’s OT Messages
Alice’s OT Messages —_—

p
A

~
J

Consistency Check

[Check | —————~

\)

[Final signature output 1

- >

Oq

)

sk

a
ka R’=k&Db

Alice’s OT Messages

[' Check

Oq

Protocol

s D
Instance Key Exchange

[f J
(_; N
& B J
é Multiplication

AN /
- Consistency Check A
- /

|

Final signature output

9

e

|

Db - kb : G Skb
Kp
Bob’s OT Messages

V7 Protocol N
%A\) Instance Key Exchange @
sk, e

ka @ Multiplication A kb
Bob’s OT Messages
Alice’s OT Messages | &

Db=kb‘G Skb

R, = k(’,'l . Db o 9
E/ j 2_ Note: This 2 round
Consistency Check comes at the cost of

' Check| - = a slight relaxation to
9 definition where
Alice is allowed negl
Final signature output . ..
o, [o > bias in instance key

On the Benefit of Two Messages

/@\) @

36‘\' Commit
H 3\"' Commi
r~ —

/V\/
——— /V\/

— S 1=

Why not generic MPC

* Highly efficient multiplication in 2 rounds
 Don’t amortize over large number of gates
* Exploit verifiability
* Take advantage of public values with respect to signature scheme
to verify inputs
* Don’t need expensive techniques to ensure input consistency

Implementation

* Open source implementation in Rust
* SHA-256, same as ECDSA
* 10,000 samples for setup, 100,000 samples for signing
e Setup is 5 rounds and all n parties participate

2-0f-2 Setup over LAN

1,000

100

Time (ms)

10

This work Lindell17

2-of-n Setup over LAN

Execution Time (ms)

175
150
125
100

75
50

g 10 12 14 16 18 20

Number of Parties

Benchmarks over WAN: 2-of-2 and 2-of-n

- >N

Round-trip latency between Virginia and Paris: 78.2 ms

Benchmarks over WAN: 2-of-4 Setup

Round-trip latency between US data centers: 11.2 ms to 79.9 ms

Benchmarks over WAN: 2-o0f-10 Setup

Round-trip latency between Ireland and Mumbai: 282 ms

Times In ms over WAN

Setup Signing
2-of-2 2-of-4 (US) 2-of-10 (World) 2-of-2 2-of-n

354.36 376.86 1228.46 81.34 81.33

Conclusion

* ECDSA threshold with no more assumptions than ECDSA

* Improved efficiency

* Open-source implementation in Rust
* https://gitlab.com/neucrypt/mpecdsa

e Can be extended to k-out-of-n

Thank You! %)

Appendix: 2-of-n Signing

sk = sk, + sk,
\

L2 H()+1 ! (sk, + sk;)
kakb m kakb SK, SKp Ty

Ska 1 1 Skb

Q‘g&\

