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- Mixed computation


- Preprocessing phase


- Active adversary corrupting up to  parties


- Security with abort

t < n/3

MPC setting in this talk



Sharing a secret :


- Sample a degree  polynomial  where 


- Evaluate  at public 


- Distribute  to party 


Reconstructing a secret:


- Each party  announces their share 


- Parties compute  using


 


where 

s

D p(x) p(0) = s

p(x) x1, …, xn

yi = p(xi) i

i (xi, yi)

s = p(0)

p(x) =
n

∑
j=1

yj ⋅ lj(x)

lj(x) =
n

∏
i=1,i≠j

(x − xi) ⋅ (xj − xi)−1

Shamir secret sharing over a field



Let  denote the sharing of  by a polynomial of degree 


Linearity: 


Multiplication: 


Using preprocessed double shares , we can reduce the degree as follows:


1. Locally compute 


2. Publicly reconstruct 


3. Locally compute 

⟨a⟩D a D

⟨a⟩D + ⟨b⟩D = ⟨a + b⟩D

⟨a⟩D ⋅ ⟨b⟩D = ⟨a ⋅ b⟩2D

(⟨r⟩t, ⟨r⟩2t)
⟨a ⋅ b⟩2t = ⟨a⟩t ⋅ ⟨b⟩t

⟨z⟩2t = ⟨a ⋅ b⟩2t − ⟨r⟩2t

⟨a ⋅ b⟩t = z + ⟨r⟩t

MPC from Shamir secret sharing
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Shamir secret sharing over ? ℤ2k
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Shamir secret sharing over ? ℤ2k



A Galois Ring  is of the form 


 


where  is prime, , and  is a monic polynomial of degree  such that its reduction 
modulo  yields an irreducible polynomial in 


Arbitrary element  can be described as  where  
and  is a root of .


Some properties of Galois Rings:


• 


• All zero divisors of  constitute ’s only maximal ideal, 


•  has exceptional sets of size 

GR(pk, d)

R = ℤpk[X]/(h(X))

p k ≥ 1 h(X) ∈ ℤpk[X] d ≥ 1
p 𝔽p[X]

a ∈ GR(pk, d) a = ad−1 ⋅ ξd−1 + … + a1 ⋅ ξ + a0 ai ∈ ℤpk

ξ h(X)

GR(p, d) = 𝔽pd

R = GR(pk, d) R (p)
GR(pk, d) pd

Basics of Galois Rings



[ACDEY19] adapts the protocol of [BH08] to  using Galois Rings


• Exceptional set for  is size , so set 


• Natural embedding 


• Just look at any  as an element of : Shamir secret sharing works over 


• [BH08] perfectly translates to ! But overhead of extension degree means:


• Communication complexity multiplied by a factor of 


• Computational complexity of multiplication is quadratic in 

ℤ2k

R = GR(2k, d) 2d d = log2(n + 1)

ι : ℤ2k ↪ R

x ∈ ℤ2k R R

R

d

d

MPC over  via Galois Rings [ACDEY19]ℤ2k



Our main contribution:  
Better encodings from  to ℤ2k GR(2k, d)



In [ACDEY19], elements  are encoded into  according to the 
natural inclusion 


Multiplication makes use of double shares :


1. Locally compute 


2. Publicly reconstruct 


3. Locally compute 

a, b ∈ ℤ2k R = GR(2k, d)
ι : ℤ2k ↪ R

(⟨ι(r)⟩t , ⟨ι(r)⟩2t)
⟨ι(a ⋅ b)⟩2t = ⟨ι(a)⟩t ⋅ ⟨ι(b)⟩t

⟨z⟩2t = ⟨ι(a ⋅ b)⟩2t − ⟨ι(r)⟩2t

⟨ι(a ⋅ b)⟩t = z + ⟨ι(r)⟩t

[ACDEY19]: 1 mult in GR  1 mult in ⇒ ℤ2k
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Let  and  be two -linear maps such that





Where  is our desired subcircuit (arithmetic over )


Given double shares , where  :


1. Locally compute 


2. Publicly reconstruct 


3. Locally compute 

Ein : (ℤ2k)δ1 → R Eout : (ℤ2k)δ2 → R ℤ2k

Ein( ⃗x ) ⋅ Ein( ⃗y ) + Eout( ⃗r) = Eout(C( ⃗x , ⃗y ) + ⃗r)

C(a1, …, a2δ1
) = (b1, …, bδ2

) ℤ2k

(⟨Ein( ⃗r)⟩t , ⟨Eout( ⃗r)⟩2t) ⃗r ∈ (ℤ2k)δ2

⟨Ein( ⃗x ) ⋅ Ein( ⃗y )⟩2t = ⟨Ein( ⃗x )⟩t ⋅ ⟨Ein( ⃗y )⟩t

⟨z⟩2t = ⟨Ein( ⃗x ) ⋅ Ein( ⃗y )⟩2t − ⟨Eout( ⃗r)⟩2t

⟨Ein(C( ⃗x , ⃗y ))⟩t = Ein(E−1
out(z)) + ⟨Ein( ⃗r)⟩t

Translating multiplications in GR to circuits in ℤ2k



Assuming a single “opening” in :


- On 2 inputs:


• [ACDEY19]: circuits with 1 multiplication and 1 output


• InnerProd: inner products of length 


• SIMD:  parallel circuits with 1 multiplication and 2 output each


- On  inputs:


• [ACDEY19]: depth 1 circuits with  multiplications and 1 output


• FLEX: depth 1 circuits with  multiplications and  outputs

R = GR(2k, d)

≈ d/2

≈ d0.6

m

m

m d

Expressiveness of our encodings



Double shares: Degree reduction + Encoding



Changing encodings: Double shares



Changing encodings: Double shares



Changing encodings: Double shares



Lemma: Let  and  be the “reduction mod ” map. Then, 
:





Where  is locally computed by parties applying  to their shares of 


Corollary: Let  shared as . Then .


We obtain daBits [RW19]  at the cost of random bits in , which allows us to 
switch between values in  and their bit decomposition (using the same encoding) in .

k̃ < k πk̃ : GR(2k, d) → GR(2k̃, d) 2k̃

∀a ∈ GR(2k, d)

πk̃(⟨a⟩) = ⟨πk̃(a)⟩

πk̃(⟨a⟩) πk̃ a

b ∈ {0,1} ⟨b⟩ ∈ R π1(⟨b⟩) = ⟨π1(b)⟩ ∈ 𝔽2d

(⟨b⟩R, ⟨b⟩𝔽) R = GR(2k, d)
R 𝔽2d

Switching between encodings in  and  : daBitsGR(2k, d) 𝔽2d



Second contribution: 
Improved double-share production



Producing double-shares: Basic technique



Producing double-shares: Basic technique



Producing double-shares: Basic technique



Producing double-shares: Basic technique



Our solution: Batch check for double-shares



Experimental results

Running time for generation (left) and check (right) step of 
double share protocols for 126k double-shares

Combined running time of generating 
and checking 126k double-shares



1. Encodings for : Exploiting  to encode circuits of .


• Just set  to use  to encode circuits over 


• Framework to construct other encodings and “translate” between them


2. Batch checks for (encoded) double-shares


• Faster preprocessing for [BH08]-style protocols (stat. security)


3. Random bits in daBits from  to 


• Improved preprocessing for conversions between linear secret sharing schemes over  and 

GR(2k, d) d ℤ2k

k = 1 𝔽2d 𝔽2

GR(2k, d) ⇒ GR(2k, d) 𝔽2d

ℤ2k 𝔽2d

Contributions recap:
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