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Shamir secret sharing over a field
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Sharing a secret s: / hppieally set D=t

- Sample a degree D polynomial p(x) where p(0) = s

- Evaluate p(x) at public x, ..., x,

- Distribute y; = p(x,) to party i

Reconstructing a secret: Check plx) i3
' . of d@g’*m D
- Each party i announces their share (x;, y;)
- Parties compute s = p(0) using </
L //’/ Inverse M%Mx’j& exists,
p(x) = Zy]. l(x) e e myE s o
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where l](.X) = H (x — xi) . ()(:'] — xi)_l (M//
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MPC from Shamir secret sharing

Let (a), denote the sharing of a by a polynomial of degree D

Linearity: {(a),, + (b), = {(a + b), wWe need  ZZDx1 parhes o reconstruck |
; Con' ¥ do s Kvrever. ..
Multiplication: (@), - (b), = (a - D),

Using preprocessed double shares ((r)t, (r)Zt), we can reduce the degree as follows:
1. Locally compute (a - b),, = (a), - (b),
2. Publicly reconstruct (z),, = (a - b),, — (1),

3. Locally compute (a - b), = z + (r),



Shamir secret sharing over Z,;?

Sharing a secret s:
- Sample a degree D polynomial p(x) where p(0) = s

- Evaluate p(x) at public x;, x,, ..., X,

- Distribute y; = p(x;) to party 1
Doesn't work For arbifrary

o
: ber of aries -
Reconstructing a secret: num P

- Each party i announces their share (x;, y;)

- Parties compute s = p(0) using

9 O
p(x) = ) ¥+ [(x)
i=1
n 4 : ¢ ¢ -+ {
where lj(x) = H (x—x;) - (xj — xi)_1 } %, %o Xon
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Shamir secret sharing over Z,;? g ? Zys s e ke e sueh o 5
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Sharing a secret s: aivwise  differences  are invertible

b w32 excephionel et
- Sample a degree D polynomial p(x) where p(0) = s TP
- Evaluate p(x) at public x;, x,, ..., X, Proof 1§ nYZ, then

x:, x; s+ 2 ] (%;: - %;)
K-1

Doesn T work tor be’f"’f\fj Hence 2 - (%o = 23)=0
= (%,;*%3) is not invertible

- Distribute y; = p(x;) to party 1

o
- er of aries -
Reconstructing a secret: num P

- Each party i announces their share (x;, y;)

How v Overcome Yhis °
- Parties compute s = p(0) using
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Basics of Galois Rings

A Galois Ring GR(p*, d) is of the form
R = Zpk[X]/(h(X))

where p is prime, kK > 1, and h(X) &€ Z [ X] is a monic polynomial of degree d > 1 such that its reduction
modulo p yields an irreducible polynomial in [Fp[X]

Arbitrary element a € GR(p*, d) can be describedasa =a,_, - 41+ ... + a, - £+ ap where a; € L,
and & is a root of i(X).

L Ad c)’i%ve mpvesew%'m'oﬂ

Some properties of Galois Rings:
+ GR(p,d) = F,q
o All zero divisors of R = GR(pk, d) constitute R’s only maximal ideal, (p)

. GR(p, d) has exceptional sets of size p*
mﬁﬁ@\ﬂ




MPC over Z,, via Galois Rings [ACDEY19]

[ACDEY19] adapts the protocol of [BH08] to Z,« using Galois Rings ndditive  representation °i_. elom o €GREpF, d)
N = ﬂLd,‘g +_,_+A|€+Qo
. Exceptional set for R = GR(2%, d) is size 2¢, so set d = log,(n+ 1) et € T mnd § s st of WIX)

can think oF as

 Natural embeddingt: Zy < R f/ consk polynominl

o Just look at any x € Z,, as an element of R: Shamir secret sharing works over R

« [BHO8] perfectly translates to R! But overhead of extension degree means:
« Communication complexity multiplied by a factor of d From  Z

» Computational complexity of multiplication is quadratic in d

[ACDE\J !ﬂ hEH-:ue,mP lnformanon - Theoretic  Seclure Mul-HPo\My C,ompuiw\—r'on over ZPK via (alois Kinjs
MarkK Abspoel, Ronald Cramer, lvan Dmﬂz\rél Daniel Efcuders, ad Chen Yuan

[BH @’6} "PQ\‘”‘FCC“‘\U S@Cure MPC with “V\O)\r‘ ODMMUV\?CAHOV\ C/OW\P\EXH'B -

ZUZ&YH\ %ee\f‘\'O\;;\,*TY‘ub’;V\FOV;\ Mﬂé Martin HivrT.



Our main contribution:
Better encodings from Z,, to GR(2%, d)



[ACDEY19]: 1 multin GR = 1 mult in Z;

In [ACDEY19], elements a, b € Z,« are encoded into R = GR(2X, d) according to the
natural inclusiont : Z < R

Multiplication makes use of double shares ((l(f‘))t : <l(l”)>2t):

1. Locally compute (i(a - b)>2t = (l(a))t ' (l(b»t
2. Publicly reconstruct <Z>2t = (1(a - b))g; — (l(l”»zt

3. Locally compute (i1(a - b)), = z + (1(r)),

- D
Can we yse the extension degree clr-,@oﬁ(m) fo compute More  expressive Civenits



[ACDEY19]: 1 multin GR = 1 mult in Z;
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In [ACDEY1 9] elements a, b F Z i are encoded into R = GR(2X, d) according to the

Multipliﬁga’fi’gn makes use of double shares ((l(f’))t : <l(r)>2t):

1./JEngally compute (l(a . b)>2t = (z(a))t ' (l(b»t
2. Publicly reconstruct (2)>, = (1(a - b)),, — (1)),
f

5 3. Locally compute (i1(a - b)), = z + (1(r)),
%
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Translating multiplications in GR to circuits in Z,

letE, : (Z,)> = Rand E_ : (Z)> — R betwo Z,-linear maps such that

E,(X) - Ey(Y) + E,(F) = E,, (C(X,y) + T)

Where C(ay, ..., ay5) = (by, ..., bs ) is our desired subcircuit (arithmetic over Z )

Given double shares ((E;,(F)), , (E,,{F))»,), where F € (Z )" :

— — — — 1[ SAme OU“HWW A3
1. Locally compute (E. (X)) - E, (V)),, = (E, (X)), - {E. (V)), petore , out

2. Publicly reconstruct (z),, = (E. (X) - E, (V)),, — (E,, (F)),,

3. Locally compute (E, (C(X,y))), = Ein(EO_ult(Z)) +(E, (7)), )

C’ With Ein(x), E:“(j), and dovble shares | can compute Ern(C(’Lij)>

Wi‘Hf\ U,\CQ&W\ﬁS




Expressiveness of our encodings

Assuming a single “opening” in R = GR(2, d):
- On 2 inputs:

« [ACDEY19]: circuits with 1 multiplication and 1 output

e InnerProd: inner products of length ~ d/2

. SIMD: ~ d"° parallel circuits with 1 multiplication and 2 output each
- On m inputs:
« [ACDEY19]: depth 1 circuits with m multiplications and 1 output

« FLEX: depth 1 circuits with m multiplications and d outputs

[AC/DE\[ Hj hEHIdm}’ lnformaton - Theoretic Secure MU‘HPmr‘y ComPub\:HOn over ZPK via  (alois KIst
Mark Abspoel, Ronald Cramer lvan "Dp\mﬁZwA, Daniel Efcuders, ad Chen Yuan



Double shares: Degree reduction + Encoding
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Changing encodings: Double shares

\ \ SIMDds




Changing encodings: Double shares
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Changing encodings: Double shares
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Switching between encodings in GR(2%, d) and >4 : daBits

Lemma: Let k < k and Ty, GR(2~, d) — GR(Z%, d) be the “reduction mod Dk map. Then,
Va € GR(2%, d):

mi({a)) = (n(a))

Where 7;({a)) is locally computed by parties applying r; to their shares of a

Corollary: Let b € {0,1} shared as (b) € R. Then m;({b)) = (m;(b)) € F..

5‘/\0»Y’W‘ﬁ 1% s\f\ﬁv?nj n

= ¥
We obtain daBits [RW19] ((b)X, (b)") at the cost of random bits in R = GR(2¥, d), which allows us to
switch between values in R and their bit decomposition (using the same encoding) in [..

[R\l\g H] ”MAV‘BR,C; CKH’/U\““S?MTXH\j Arithmetic AV\A boolean Circuits k)"‘H/\ Ackive Secors %y
Dragos  Rotaru and Tim Wood



Second contribution:
Improved double-share production



Producing double-shares: Basic technique
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Produci
cing double-shares: Basic techniq
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Producing double-shares: Basic technique
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Producing double-shares: Basic technique

kK elements
(Galois ?Jwg)

£-4 elements
(Z %)
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Our solution: Batch check for double-shares
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Experimental results

Running time for generation (left) and check (right) step of Combined running time of generating
double share protocols for 126k double-shares and checking 126k double-shares
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Contributions recap:

1. Encodings for GR(2X, d): Exploiting d to encode circuits of 2 5.

e Just set k = 1 to use [, to encode circuits over [

 Framework to construct other encodings and “translate” between them
2. Batch checks for (encoded) double-shares

* Faster preprocessing for [BHO8]-style protocols (stat. security)

3. Random bits in GR(2%, d) = daBits from GR(2, d) to Fra

 Improved preprocessing for conversions between linear secret sharing schemes over Z, and [,
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