
Circuit Amortization Friendly Encodings and
Their Application to Statistically Secure

Multiparty Computation

Anders Dalskov, Eysa Lee, and Eduardo Soria-Vazquez

- Mixed computation

- Preprocessing phase

- Active adversary corrupting up to parties

- Security with abort

t < n/3

MPC setting in this talk

Sharing a secret :

- Sample a degree polynomial where

- Evaluate at public

- Distribute to party

Reconstructing a secret:

- Each party announces their share

- Parties compute using

where

s

D p(x) p(0) = s

p(x) x1, …, xn

yi = p(xi) i

i (xi, yi)

s = p(0)

p(x) =
n

∑
j=1

yj ⋅ lj(x)

lj(x) =
n

∏
i=1,i≠j

(x − xi) ⋅ (xj − xi)−1

Shamir secret sharing over a field

Let denote the sharing of by a polynomial of degree

Linearity:

Multiplication:

Using preprocessed double shares , we can reduce the degree as follows:

1. Locally compute

2. Publicly reconstruct

3. Locally compute

⟨a⟩D a D

⟨a⟩D + ⟨b⟩D = ⟨a + b⟩D

⟨a⟩D ⋅ ⟨b⟩D = ⟨a ⋅ b⟩2D

(⟨r⟩t, ⟨r⟩2t)
⟨a ⋅ b⟩2t = ⟨a⟩t ⋅ ⟨b⟩t

⟨z⟩2t = ⟨a ⋅ b⟩2t − ⟨r⟩2t

⟨a ⋅ b⟩t = z + ⟨r⟩t

MPC from Shamir secret sharing

Sharing a secret :

- Sample a degree polynomial where

- Evaluate at public

- Distribute to party

Reconstructing a secret:

- Each party announces their share

- Parties compute using

where

s

D p(x) p(0) = s

p(x) x1, x2, …, xn

yi = p(xi) i

i (xi, yi)

s = p(0)

p(x) =
n

∑
j=1

yj ⋅ lj(x)

lj(x) =
n

∏
i=1,i≠j

(x − xi) ⋅ (xj − xi)−1

Shamir secret sharing over ? ℤ2k

Sharing a secret :

- Sample a degree polynomial where

- Evaluate at public

- Distribute to party

Reconstructing a secret:

- Each party announces their share

- Parties compute using

where

s

D p(x) p(0) = s

p(x) x1, x2, …, xn

yi = p(xi) i

i (xi, yi)

s = p(0)

p(x) =
n

∑
j=1

yj ⋅ lj(x)

lj(x) =
n

∏
i=1,i≠j

(x − xi) ⋅ (xj − xi)−1

Shamir secret sharing over ? ℤ2k

A Galois Ring is of the form

where is prime, , and is a monic polynomial of degree such that its reduction
modulo yields an irreducible polynomial in

Arbitrary element can be described as where
and is a root of .

Some properties of Galois Rings:

•

• All zero divisors of constitute ’s only maximal ideal,

• has exceptional sets of size

GR(pk, d)

R = ℤpk[X]/(h(X))

p k ≥ 1 h(X) ∈ ℤpk[X] d ≥ 1
p 𝔽p[X]

a ∈ GR(pk, d) a = ad−1 ⋅ ξd−1 + … + a1 ⋅ ξ + a0 ai ∈ ℤpk

ξ h(X)

GR(p, d) = 𝔽pd

R = GR(pk, d) R (p)
GR(pk, d) pd

Basics of Galois Rings

[ACDEY19] adapts the protocol of [BH08] to using Galois Rings

• Exceptional set for is size , so set

• Natural embedding

• Just look at any as an element of : Shamir secret sharing works over

• [BH08] perfectly translates to ! But overhead of extension degree means:

• Communication complexity multiplied by a factor of

• Computational complexity of multiplication is quadratic in

ℤ2k

R = GR(2k, d) 2d d = log2(n + 1)

ι : ℤ2k ↪ R

x ∈ ℤ2k R R

R

d

d

MPC over via Galois Rings [ACDEY19]ℤ2k

Our main contribution:

Better encodings from to ℤ2k GR(2k, d)

In [ACDEY19], elements are encoded into according to the
natural inclusion

Multiplication makes use of double shares :

1. Locally compute

2. Publicly reconstruct

3. Locally compute

a, b ∈ ℤ2k R = GR(2k, d)
ι : ℤ2k ↪ R

(⟨ι(r)⟩t , ⟨ι(r)⟩2t)
⟨ι(a ⋅ b)⟩2t = ⟨ι(a)⟩t ⋅ ⟨ι(b)⟩t

⟨z⟩2t = ⟨ι(a ⋅ b)⟩2t − ⟨ι(r)⟩2t

⟨ι(a ⋅ b)⟩t = z + ⟨ι(r)⟩t

[ACDEY19]: 1 mult in GR 1 mult in ⇒ ℤ2k

[ACDEY19]: 1 mult in GR 1 mult in ⇒ ℤ2k

In [ACDEY19], elements are encoded into according to the
natural inclusion

Multiplication makes use of double shares :

1. Locally compute

2. Publicly reconstruct

3. Locally compute

a, b ∈ ℤ2k R = GR(2k, d)
ι : ℤ2k ↪ R

(⟨ι(r)⟩t , ⟨ι(r)⟩2t)
⟨ι(a ⋅ b)⟩2t = ⟨ι(a)⟩t ⋅ ⟨ι(b)⟩t

⟨z⟩2t = ⟨ι(a ⋅ b)⟩2t − ⟨ι(r)⟩2t

⟨ι(a ⋅ b)⟩t = z + ⟨ι(r)⟩t

Let and be two -linear maps such that

Where is our desired subcircuit (arithmetic over)

Given double shares , where :

1. Locally compute

2. Publicly reconstruct

3. Locally compute

Ein : (ℤ2k)δ1 → R Eout : (ℤ2k)δ2 → R ℤ2k

Ein(⃗x) ⋅ Ein(⃗y) + Eout(⃗r) = Eout(C(⃗x , ⃗y) + ⃗r)

C(a1, …, a2δ1
) = (b1, …, bδ2

) ℤ2k

(⟨Ein(⃗r)⟩t , ⟨Eout(⃗r)⟩2t) ⃗r ∈ (ℤ2k)δ2

⟨Ein(⃗x) ⋅ Ein(⃗y)⟩2t = ⟨Ein(⃗x)⟩t ⋅ ⟨Ein(⃗y)⟩t

⟨z⟩2t = ⟨Ein(⃗x) ⋅ Ein(⃗y)⟩2t − ⟨Eout(⃗r)⟩2t

⟨Ein(C(⃗x , ⃗y))⟩t = Ein(E−1
out(z)) + ⟨Ein(⃗r)⟩t

Translating multiplications in GR to circuits in ℤ2k

Assuming a single “opening” in :

- On 2 inputs:

• [ACDEY19]: circuits with 1 multiplication and 1 output

• InnerProd: inner products of length

• SIMD: parallel circuits with 1 multiplication and 2 output each

- On inputs:

• [ACDEY19]: depth 1 circuits with multiplications and 1 output

• FLEX: depth 1 circuits with multiplications and outputs

R = GR(2k, d)

≈ d/2

≈ d0.6

m

m

m d

Expressiveness of our encodings

Double shares: Degree reduction + Encoding

Changing encodings: Double shares

Changing encodings: Double shares

Changing encodings: Double shares

Lemma: Let and be the “reduction mod ” map. Then,
:

Where is locally computed by parties applying to their shares of

Corollary: Let shared as . Then .

We obtain daBits [RW19] at the cost of random bits in , which allows us to
switch between values in and their bit decomposition (using the same encoding) in .

k̃ < k πk̃ : GR(2k, d) → GR(2k̃, d) 2k̃

∀a ∈ GR(2k, d)

πk̃(⟨a⟩) = ⟨πk̃(a)⟩

πk̃(⟨a⟩) πk̃ a

b ∈ {0,1} ⟨b⟩ ∈ R π1(⟨b⟩) = ⟨π1(b)⟩ ∈ 𝔽2d

(⟨b⟩R, ⟨b⟩𝔽) R = GR(2k, d)
R 𝔽2d

Switching between encodings in and : daBitsGR(2k, d) 𝔽2d

Second contribution:

Improved double-share production

Producing double-shares: Basic technique

Producing double-shares: Basic technique

Producing double-shares: Basic technique

Producing double-shares: Basic technique

Our solution: Batch check for double-shares

Experimental results

Running time for generation (left) and check (right) step of
double share protocols for 126k double-shares

Combined running time of generating
and checking 126k double-shares

1. Encodings for : Exploiting to encode circuits of .

• Just set to use to encode circuits over

• Framework to construct other encodings and “translate” between them

2. Batch checks for (encoded) double-shares

• Faster preprocessing for [BH08]-style protocols (stat. security)

3. Random bits in daBits from to

• Improved preprocessing for conversions between linear secret sharing schemes over and

GR(2k, d) d ℤ2k

k = 1 𝔽2d 𝔽2

GR(2k, d) ⇒ GR(2k, d) 𝔽2d

ℤ2k 𝔽2d

Contributions recap:

1. Encodings for : Exploiting to encode circuits of .

• Just set to use to encode circuits over

• Framework to construct other encodings and “translate” between them

2. Batch checks for (encoded) double-shares

• Faster preprocessing for [BH08]-style protocols (stat. security)

3. Random bits in daBits from to

• Improved preprocessing for conversions between linear secret sharing schemes over and

GR(2k, d) d ℤ2k

k = 1 𝔽2d 𝔽2

GR(2k, d) ⇒ GR(2k, d) 𝔽2d

ℤ2k 𝔽2d

Contributions recap:

