Circuit Amortization Friendly Encodings and
Their Application to Statistically Secure
Multiparty Computation

Anders Dalskov, Eysa Lee, and Eduardo Soria-Vazquez

(

A%Fhus Umversﬂrﬂ

TN Northeastern Um%mﬁj

MPC setting in this talk
between

want fo support Switthivg \

e/ v *-S

&r‘f’nf\ML‘HC a\.V\A Iﬂole\V\

- Mixed computation

K PPCPY\OC@, SS'\V\j

- Preprocessing phase

- Active adversary corrupting up to ¢ < n/3 parties

- Security with abort ?

hnigue s +v et
Cah "*FP‘& stnd ar d e /

] v F
?\’)UD\W\V\‘RCA ouﬂoc/l* Az,_hve,@, buk o

N “RD\JS of' i MWK

Shamir secret sharing over a field

Can ;n-k,vrpo\o\"‘ﬁ wi Th
D+l Po?n+5, So

Sharing a secret s: / hppieally set D=t

- Sample a degree D polynomial p(x) where p(0) = s

- Evaluate p(x) at public x, ..., x,

- Distribute y; = p(x,) to party i

Reconstructing a secret: Check plx) i3
' . of d@g’*m D
- Each party i announces their share (x;, y;)
- Parties compute s = p(0) using </
L //’/ Inverse M%Mx’j& exists,
p(x) = Zy]. l(x) e e myE s o
J=1 e on A fielo

n
where l](.X) = H (x — xi) . ()(:'] — xi)_l (M//
i=1,i#j

MPC from Shamir secret sharing

Let (a), denote the sharing of a by a polynomial of degree D

Linearity: {(a),, + (b), = {(a + b), wWe need ZZDx1 parhes o reconstruck |
; Con' ¥ do s Kvrever. ..
Multiplication: (@), - (b), = (a - D),

Using preprocessed double shares ((r)t, (r)Zt), we can reduce the degree as follows:
1. Locally compute (a - b),, = (a), - (b),
2. Publicly reconstruct (z),, = (a - b),, — (1),

3. Locally compute (a - b), = z + (r),

Shamir secret sharing over Z,;?

Sharing a secret s:
- Sample a degree D polynomial p(x) where p(0) = s

- Evaluate p(x) at public x;, x,, ..., X,

- Distribute y; = p(x;) to party 1
Doesn't work For arbifrary

o
: ber of aries -
Reconstructing a secret: num P

- Each party i announces their share (x;, y;)

- Parties compute s = p(0) using

9 O
p(x) =) ¥+ [(x)
i=1
n 4 : ¢ ¢ -+ {
where lj(x) = H (x—x;) - (xj — xi)_1 } %, %o Xon

i=1,i]

Shamir secret sharing over Z,;? g ? Zys s e ke e sueh o 5
satistying 1M

S = ?7(»1 %ni CZZK u\)\f\ﬁ"‘e 0\,\\
/ 1S Qo\\\ed AN

Sharing a secret s: aivwise differences are invertible

b w32 excephionel et
- Sample a degree D polynomial p(x) where p(0) = s TP
- Evaluate p(x) at public x;, x,, ..., X, Proof 1§ nYZ, then

x:, x; s+ 2] (%;: - %;)
K-1

Doesn T work tor be’f"’f\fj Hence 2 - (%o = 23)=0
= (%,;*%3) is not invertible

- Distribute y; = p(x;) to party 1

o
- er of aries -
Reconstructing a secret: num P

- Each party i announces their share (x;, y;)

How v Overcome Yhis °
- Parties compute s = p(0) using

) d@ el Q\ GoJDiS @X“’CV\S\-DY\ o F Z‘Zk s &
A ree - K
p(x) =) ¥+ [(x) g e ORO g

j=1

where [(x) = H (x—x) - (5 —x)~"

i=1,i#]

Basics of Galois Rings

A Galois Ring GR(p*, d) is of the form
R = Zpk[X]/(h(X))

where p is prime, kK > 1, and h(X) &€ Z [X] is a monic polynomial of degree d > 1 such that its reduction
modulo p yields an irreducible polynomial in [Fp[X]

Arbitrary element a € GR(p*, d) can be describedasa =a,_, - 41+ ... + a, - £+ ap where a; € L,
and & is a root of i(X).

L Ad c)’i%ve mpvesew%'m'oﬂ

Some properties of Galois Rings:
+ GR(p,d) = F,q
o All zero divisors of R = GR(pk, d) constitute R’s only maximal ideal, (p)

. GR(p, d) has exceptional sets of size p*
mﬁﬁ@\ﬂ

MPC over Z,, via Galois Rings [ACDEY19]

[ACDEY19] adapts the protocol of [BH08] to Z,« using Galois Rings ndditive representation °i_. elom o €GREpF, d)
N = ﬂLd,‘g +_,_+A|€+Qo
. Exceptional set for R = GR(2%, d) is size 2¢, so set d = log,(n+ 1) et € T mnd § s st of WIX)

can think oF as

 Natural embeddingt: Zy < R f/ consk polynominl

o Just look at any x € Z,, as an element of R: Shamir secret sharing works over R

« [BHO8] perfectly translates to R! But overhead of extension degree means:
« Communication complexity multiplied by a factor of d From Z

» Computational complexity of multiplication is quadratic in d

[ACDE\J !ﬂ hEH-:ue,mP lnformanon - Theoretic Seclure Mul-HPo\My C,ompuiw\—r'on over ZPK via (alois Kinjs
MarkK Abspoel, Ronald Cramer, lvan Dmﬂz\rél Daniel Efcuders, ad Chen Yuan

[BH @’6} "PQ\‘”‘FCC“‘\U S@Cure MPC with “V\O)\r‘ ODMMUV\?CAHOV\ C/OW\P\EXH'B -

ZUZ&YH\ %ee\f‘\'O\;;\,*TY‘ub’;V\FOV;\ Mﬂé Martin HivrT.

Our main contribution:
Better encodings from Z,, to GR(2%, d)

[ACDEY19]: 1 multin GR = 1 mult in Z;

In [ACDEY19], elements a, b € Z,« are encoded into R = GR(2X, d) according to the
natural inclusiont : Z < R

Multiplication makes use of double shares ((l(f‘))t : <l(l”)>2t):

1. Locally compute (i(a - b)>2t = (l(a))t ' (l(b»t
2. Publicly reconstruct <Z>2t = (1(a - b))g; — (l(l”»zt

3. Locally compute (i1(a - b)), = z + (1(r)),

- D
Can we yse the extension degree clr-,@oﬁ(m) fo compute More expressive Civenits

[ACDEY19]: 1 multin GR = 1 mult in Z;

,,ﬁf,;wmw

In [ACDEY1 9] elements a, b F Z i are encoded into R = GR(2X, d) according to the

Multipliﬁga’fi’gn makes use of double shares ((l(f’))t : <l(r)>2t):

1./JEngally compute (l(a . b)>2t = (z(a))t ' (l(b»t
2. Publicly reconstruct (2)>, = (1(a - b)),, — (1)),
f

5 3. Locally compute (i1(a - b)), = z + (1(r)),
%

- e
\ CM’\ we yse The 2 x+CNSion de@me c)f-;@oﬁ(vﬂ +0 Compute MOre EXPressive Civeyits .

J
: re o £ d
Gos) we svbshivie 1:Zux PR e encedings E(Zy) (R whe

Translating multiplications in GR to circuits in Z,

letE, : (Z,)> = Rand E_ : (Z)> — R betwo Z,-linear maps such that

E,(X) - Ey(Y) + E,(F) = E,, (C(X,y) + T)

Where C(ay, ..., ay5) = (by, ..., bs) is our desired subcircuit (arithmetic over Z)

Given double shares ((E;,(F)), , (E,,{F))»,), where F € (Z)" :

— — — — 1[SAme OU“HWW A3
1. Locally compute (E. (X)) - E, (V)),, = (E, (X)), - {E. (V)), petore , out

2. Publicly reconstruct (z),, = (E. (X) - E, (V)),, — (E,, (F)),,

3. Locally compute (E, (C(X,y))), = Ein(EO_ult(Z)) +(E, (7)),)

C’ With Ein(x), E:“(j), and dovble shares | can compute Ern(C(’Lij)>

Wi‘Hf\ U,\CQ&W\ﬁS

Expressiveness of our encodings

Assuming a single “opening” in R = GR(2, d):
- On 2 inputs:

« [ACDEY19]: circuits with 1 multiplication and 1 output

e InnerProd: inner products of length ~ d/2

. SIMD: ~ d"° parallel circuits with 1 multiplication and 2 output each
- On m inputs:
« [ACDEY19]: depth 1 circuits with m multiplications and 1 output

« FLEX: depth 1 circuits with m multiplications and d outputs

[AC/DE\[Hj hEHIdm}’ lnformaton - Theoretic Secure MU‘HPmr‘y ComPub\:HOn over ZPK via (alois KIst
Mark Abspoel, Ronald Cramer lvan "Dp\mﬁZwA, Daniel Efcuders, ad Chen Yuan

Double shares: Degree reduction + Encoding

i {FLEXAS . /

(e ()%,
CERT () V)

TS\MDAS
. (\<E:;MD(?)>10,
(B () V24)

Changing encodings: Double shares

\ \ SIMDds

Changing encodings: Double shares

\ \ SIMDds

Changing encodings: Double shares

/

4 \

" create your ‘,
' \

\ \ SIMDds

Switching between encodings in GR(2%, d) and >4 : daBits

Lemma: Let k < k and Ty, GR(2~, d) — GR(Z%, d) be the “reduction mod Dk map. Then,
Va € GR(2%, d):

mi({a)) = (n(a))

Where 7;({a)) is locally computed by parties applying r; to their shares of a

Corollary: Let b € {0,1} shared as (b) € R. Then m;({b)) = (m;(b)) € F..

5‘/\0»Y’W‘ﬁ 1% s\f\ﬁv?nj n

= ¥
We obtain daBits [RW19] ((b)X, (b)") at the cost of random bits in R = GR(2¥, d), which allows us to
switch between values in R and their bit decomposition (using the same encoding) in [..

[R\l\g H] ”MAV‘BR,C; CKH’/U\““S?MTXH\j Arithmetic AV\A boolean Circuits k)"‘H/\ Ackive Secors %y
Dragos Rotaru and Tim Wood

Second contribution:
Improved double-share production

Producing double-shares: Basic technique

S

(H‘j\)er -~ \V\\IQY’"Hb‘C\)

g

evevy hon- Yrivip

N ranchow
B - = é//‘

value S

Squart <ub -matrix s e rTible

Produci
cing double-shares: Basic techniq
ue

//>

3ua\mv\+€€<§

n-~%
Are rAndo)

D

(H‘j\)@r - \V\\ICI"Hb‘C\)

<{S.?

¢ s.)

/‘ N rancom

valve S

Producing double-shares: Basic technique

ey (S$.7,,

(H‘:}?Cr _ \y\vcr'\‘ib\f»\)

Producing double-shares: Basic technique

kK elements
(Galois ?Jwg)

£-4 elements
(Z %)
[ACDEY 17

T

D

|
ry >

(H‘j?ﬁf _ \V\VCF‘H‘O‘C\)

<{S.?

< s.)

Our solution: Batch check for double-shares

g)
g) - -
CE(e))D CE(s
2k er\Coo‘MjS M
\\ L‘ <E(r‘z+,)>/ (Hn?erf\v\\/cr*“?b\é)
_ CE(s))
o - p

Bﬂd"@% Ch@@k 0(reSu\’HV\j E(r) yalves.
* Achow of M€ W\M(GR(L“,M) has o ?TéSﬁYv@ e,v\c,oéi‘\r\ﬂs

K Zevo Adivisaw s — careful

Q\/\o\,\\e,v'\9es :

Experimental results

Running time for generation (left) and check (right) step of Combined running time of generating
double share protocols for 126k double-shares and checking 126k double-shares
® SIMD R 7 | - 5| ® SMD
A FLEX /,/ A / ®m ACD+19 /,’
351 o ACDL19 R P | // o] A FLEX //
3.0 A //' | // - 7
“ 2.5 ”,, = a // __6- ///
o Ex=] -~ L / <) |
() A L - g
= -~ o _.---*"8 = /’. € 51 o
= 2.0 4 ,//’ ’’’’ _ ’,”, = 3 //’ //,
s |2 g 4 ,’, _______
/// '.”’ /’,, e 7 _____.L-"'"_
1.5 1 e ,/” 2 1 /// ;. ::: ’’’’’’
:" ,,/" . ,,/" ”’¢:::;,‘l _________ O mm—mm—————— -
1.0 1 ,// ,,f"’ 2 - ‘_::;",_f__’_..-——f
w t::::::::::.::::::::::‘:::::::::-_g $--
|l I] 1 T 0] T T T T 1- I | | | |
- 6 8 10 12 - 6 8 10 12 - (§) 8 10 12
Parties Parties Parties

small overhead in o
jmcmk'\ wwdf—ol %od’(/lfl CWC’C shows cambined

: ' F
doyble Sharts thw\bu IM}OV\')VC.YVW

Contributions recap:

1. Encodings for GR(2X, d): Exploiting d to encode circuits of 2 5.

e Just set k = 1 to use [, to encode circuits over [

 Framework to construct other encodings and “translate” between them
2. Batch checks for (encoded) double-shares

* Faster preprocessing for [BHO8]-style protocols (stat. security)

3. Random bits in GR(2%, d) = daBits from GR(2, d) to Fra

 Improved preprocessing for conversions between linear secret sharing schemes over Z, and [,

Contributions recap:

1. Encodings for GR(2X, d): Exploiting d to encode circuits of 2 5.

e Just set k = 1 to use [, to encode circuits over [

 Framework to construct other encodings and “translate” between them
2. Batch checks for (encoded) double-shares

* Faster preprocessing for [BHO8]-style protocols (stat. security)

3. Random bits in GR(2%, d) = daBits from GR(2, d) to Fra

 Improved preprocessing for conversions between linear secret sharing schemes over Z, and [,

