Circuit Amortization Friendly Encodings and Their Application to Statistically Secure Multiparty Computation

Anders Dalskov, **Eysa Lee**, and Eduardo Soria-Vazquez

Aarhus University

- Northeastern University

MPC setting in this talk

- Mixed computation
- Preprocessing phase
- Active adversary corrupting up to t < n/3 parties
- Security with abort Can apply standard techniques to get guaranteed output delivery, but not a focus of this work

- Want to support switching between arithmetic and boolean circuits

MPC from Shamir secret sharing

Let $\langle a \rangle_D$ denote the sharing of a by a polynomial of degree D Linearity: $\langle a \rangle_D + \langle b \rangle_D = \langle a + b \rangle_D$ Multiplication: $\langle a \rangle_D \cdot \langle b \rangle_D = \langle a \cdot b \rangle_{2D}$ We need $\geq 2D + 1$ parties to reconstruct! Can't do this forever...

Using preprocessed double shares $(\langle r \rangle_t, \langle r \rangle_{2t})$, we can reduce the degree as follows: 1. Locally compute $\langle a \cdot b \rangle_{2t} = \langle a \rangle_t \cdot \langle b \rangle_t$

- 2. Publicly reconstruct $\langle z \rangle_{2t} = \langle a \cdot b \rangle_{2t} \langle r \rangle_{2t}$
- 3. Locally compute $\langle a \cdot b \rangle_t = z + \langle r \rangle_t$

Shamir secret sharing over \mathbb{Z}_{2^k} ?

Sharing a secret s:

- Sample a degree *D* polynomial p(x) where p(0) = s
- Evaluate p(x) at public x_1, x_2, \ldots, x_n
- Distribute $y_i = p(x_i)$ to party *i*

Reconstructing a secret:

- Each party *i* announces their share (x_i, y_i)
- Parties compute s = p(0) using

$$p(x) = \sum_{j=1}^{n} y_j \cdot l_j(x)$$

where
$$l_j(x) = \prod_{i=1, i \neq j}^n (x - x_i) \cdot (x_j - x_i)^{-1}$$

Shamir secret sharing over \mathbb{Z}_{2^k} ?

<u>Sharing a secret *s*:</u>

- Sample a degree D polynomial p(x) where p(0) = s
- Evaluate p(x) at public x_1, x_2, \ldots, x_n
- Distribute $y_i = p(x_i)$ to party *i*

Reconstructing a secret:

- Each party *i* announces their share (x_i, y_i)
- Parties compute s = p(0) using

$$p(x) = \sum_{j=1}^{n} y_j \cdot l_j(x)$$

where
$$l_j(x) = \prod_{i=1, i \neq j}^n (x - x_i) \cdot (x_j - x_i)^{-1}$$

Why? $\mathbb{Z}_{2^{k}}$ has no subset $S = \{x_1, \dots, x_n\} \subset \mathbb{Z}_{2^{k}}$ where all pairwise differences are invertible for n > 2.

Proof: If
$$n > 2$$
, then
 $\exists x_i, x_j$ s.t. $2 | (x_i - x_j)$
Hence $2^{k-1} \cdot (x_i - x_j) = 0$
 $\Rightarrow (x_i - x_j)$ is not invertible

Doesn't work for arbitrary number of parties!

> How to overcome this? a degree-d Galois extension of $\mathbb{Z}_{2^{k}}$ is a <u>Galois Ring</u> $GR(2^{k}, d)$

Basics of Galois Rings

A Galois Ring $GR(p^k, d)$ is of the form

$$R = \mathbb{Z}$$

where p is prime, $k \ge 1$, and $h(X) \in \mathbb{Z}_{p^k}[X]$ is a monic polynomial of degree $d \ge 1$ such that its reduction modulo p yields an irreducible polynomial in $\mathbb{F}_p[X]$

Arbitrary element $a \in GR(p^k, d)$ can be described a and ξ is a root of h(X).

Some properties of Galois Rings:

- $GR(p,d) = \mathbb{F}_{p^d}$
- All zero divisors of $R = GR(p^k, d)$ constitute R's only maximal ideal, (p)
- $GR(p^k, d)$ has exceptional sets of size p^d

$Z_{p^k}[X]/(h(X))$

as
$$a = a_{d-1} \cdot \xi^{d-1} + \ldots + a_1 \cdot \xi + a_0$$
 where $a_i \in \mathbb{Z}_{p^k}$

We can do polynomial interpolation!

MPC over \mathbb{Z}_{2^k} via Galois Rings [ACDEY19]

[ACDEY19] adapts the protocol of [BH08] to \mathbb{Z}_{2^k} using Galois Rings

- Exceptional set for $R = GR(2^k, d)$ is size 2^d , so set $d = \log_2(n+1)$
- can think of as Const polynomial • Natural embedding $\iota: \mathbb{Z}_{2^k} \hookrightarrow R$
 - Just look at any $x \in \mathbb{Z}_{2^k}$ as an element of R: Shamir secret sharing works over R
- [BH08] perfectly translates to R! But overhead of extension degree means:
 - Communication complexity multiplied by a factor of d
 - Computational complexity of multiplication is quadratic in d

"Efficient Information-Theoretic Secure Multiparty Computation over Zpk via Galois Rings ACDEY 19] Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero, and Chen Yuan [BH Ø8] "Perfectly Secure MPC with linear communication complexity Zuzana Beerliová - Trubíniová and Martin Hirt.

additive representation of elem
$$a \in GR(p^k, d)$$

 $a = a_{d-1}\xi^{d-1} + \dots + a_i\xi + a_i$
where $a : \in \mathbb{Z}p^k$ and ξ is a root of $h(X)$

2 poly w/ d coefficients from Z2K

Our main contribution: Better encodings from \mathbb{Z}_{2^k} to $GR(2^k, d)$

[ACDEY19]: 1 mult in GR \Rightarrow 1 mult in \mathbb{Z}_{2^k}

In [ACDEY19], elements $a, b \in \mathbb{Z}_{2^k}$ are encoded into $R = GR(2^k, d)$ according to the natural inclusion $\iota : \mathbb{Z}_{2^k} \hookrightarrow R$

Multiplication makes use of double shares

- 1. Locally compute $\langle \iota(a \cdot b) \rangle_{2t} = \langle \iota(a) \rangle_{t}$
- 2. Publicly reconstruct $\langle z \rangle_{2t} = \langle \iota(a \cdot b) \rangle_2$
- 3. Locally compute $\langle \iota(a \cdot b) \rangle_t = z + \langle \iota(r) \rangle_t$

$$\left\{ \left\langle \iota(r) \right\rangle_{t}, \left\langle \iota(r) \right\rangle_{2t} \right\} \right\}$$

$$\left\{ \left\langle \iota(b) \right\rangle_{t} \right\}$$

$$\left\{ \left\langle \iota(b) \right\rangle_{2t} \right\}$$

$$\left\{ \left\langle \iota(r) \right\rangle_{2t} \right\}$$

Can we use the extension degree d=log(n) to compute more expressive circuits?

[ACDEY19]: 1 mult in GR \Rightarrow 1 mult in \mathbb{Z}_{2^k}

In [ACDEY19], elements $a, b \in \mathbb{Z}_{2^k}$ are encoded into $R = GR(2^k, d)$ according to the natural inclusion $\iota : \mathbb{Z}_{2^k} \hookrightarrow R$

Multiplication makes use of double shares

- 1. Locally compute $\langle \iota(a \cdot b) \rangle_{2t} = \langle \iota(a) \rangle_{t}$ 2. Publicly reconstruct $\langle z \rangle_{2t} = \langle \iota(a \cdot b) \rangle_{2t}$
- 3. Locally compute $\langle \iota(a \cdot b) \rangle_t = z + \langle \iota(r) \rangle_t$

Can we use the extension degree d=1

Yes! We substitute $1: \mathbb{Z}_{2^{K}} \hookrightarrow \mathbb{R}$ for

$$S \left(\langle \iota(r) \rangle_{t}, \langle \iota(r) \rangle_{2t} \right):$$

$$\cdot \langle \iota(b) \rangle_{t}$$

$$2t - \langle \iota(r) \rangle_{2t}$$

$$i) \rangle_{t}$$

$$log(n) \text{ to compute more expressive circuits?}$$

$$r \text{ encodings } E: \left(\mathbb{Z}_{2^{k}} \right)^{\delta} \hookrightarrow \mathbb{R} \text{ , where } \delta \leq d$$

Translating multiplications in GR to circuits in \mathbb{Z}_{2^k}

Let $E_{in}: (\mathbb{Z}_{2k})^{\delta_1} \to R$ and $E_{out}: (\mathbb{Z}_{2k})^{\delta_2} \to R$ be two \mathbb{Z}_{2k} -linear maps such that $E_{in}(\overrightarrow{x}) \cdot E_{in}(\overrightarrow{y}) + E$

Where $C(a_1, \ldots, a_{2\delta_1}) = (b_1, \ldots, b_{\delta_2})$ is our desired subcircuit (arithmetic over \mathbb{Z}_{2^k})

Given double shares $(\langle E_{in}(\vec{r}) \rangle_t, \langle E_{out}(\vec{r}) \rangle_{2t})$, wh

- 1. Locally compute $\langle E_{in}(\vec{x}) \cdot E_{in}(\vec{y}) \rangle_{2t} = \langle E_{in}(\vec{x}) \cdot E_{in}(\vec{y}) \rangle_{2t}$
- 2. Publicly reconstruct $\langle z \rangle_{2t} = \langle E_{in}(\vec{x}) \cdot E_{in}(\vec{y}) \rangle$
- 3. Locally compute $\langle E_{in}(C(\vec{x}, \vec{y})) \rangle_t = E_{in}(E_{out}^{-1}(E_{out}))$ With $E_{in}(x)$, $E_{in}(y)$, and double shares, can compute $E_{in}(C(x,y))$

$$E_{out}(\vec{r}) = E_{out}(C(\vec{x}, \vec{y}) + \vec{r})$$

here
$$\vec{r} \in (\mathbb{Z}_{2^k})^{\delta_2}$$
:
 $(\vec{x})_t \cdot \langle E_{in}(\vec{y}) \rangle_t$
 $(z)_{2t} - \langle E_{out}(\vec{r}) \rangle_{2t}$
 $(z)_t + \langle E_{in}(\vec{r}) \rangle_t$

Same outline as before, but with encodings

Expressiveness of our encodings

Assuming a single "opening" in $R = GR(2^k, d)$:

- On 2 inputs:
 - [ACDEY19]: circuits with 1 multiplication and 1 output
 - InnerProd: inner products of length $\approx d/2$
 - <u>SIMD</u>: $\approx d^{0.6}$ parallel circuits with 1 multiplication and 2 output each
- On *m* inputs:
 - [ACDEY19]: depth 1 circuits with *m* multiplications and 1 output
 - FLEX: depth 1 circuits with *m* multiplications and *d* outputs

[ACDEY 19] "Efficient Information-Theoretic Secure Multiparty Computation over Zpk via Galois Rings Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero, and Chen Yuan

Double shares: Degree reduction + Encoding

Changing encodings: Double shares

Changing encodings: Double shares

Changing encodings: Double shares

Switching between encodings in $GR(2^k, d)$ and \mathbb{F}_{2^d} : daBits

Lemma: Let $\tilde{k} < k$ and $\pi_{\tilde{k}} : GR(2^k, d) \to GR(2^{\tilde{k}}, d)$ be the "reduction mod $2^{\tilde{k}}$ " map. Then, $\forall a \in GR(2^k, d)$:

Where $\pi_{\tilde{k}}(\langle a \rangle)$ is locally computed by parties applying $\pi_{\tilde{k}}$ to their shares of a

<u>Corollary</u>: Let $b \in \{0,1\}$ shared as $\langle b \rangle \in R$. The

sharing in sharing in

We obtain daBits [RW19] $(\langle b \rangle^R, \langle b \rangle^F)$ at the cost of random bits in $R = GR(2^k, d)$, which allows us to switch between values in R and their bit decomposition (using the same encoding) in \mathbb{F}_{2^d} .

> [RW19] "MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security" Dragos Rotaru and Tim Wood

- $\pi_{\tilde{k}}(\langle a \rangle) = \langle \pi_{\tilde{k}}(a) \rangle$

$$\operatorname{en} \pi_1(\langle b \rangle) = \langle \pi_1(b) \rangle \in \mathbb{F}_{2^d}.$$

Second contribution: Improved double-share production

Our solution: Batch check for double-shares

$$2t \text{ encodings} \left\{ \begin{bmatrix} \langle E(r,) \rangle \\ \\ \\ \\ \\ \\ \\ \langle E(r_{2t}) \rangle \end{bmatrix} = \begin{bmatrix} M \\ (Hyper-Integer) \end{bmatrix} \right\}$$

Experimental results

Running time for generation (left) and check (right) step of

Contributions recap:

- 1. Encodings for $GR(2^k, d)$: Exploiting *d* to encode circuits of \mathbb{Z}_{2^k} .
 - Just set k = 1 to use \mathbb{F}_{2^d} to encode circuits over \mathbb{F}_2
 - Framework to construct other encodings and "translate" between them
- 2. Batch checks for (encoded) double-shares
 - Faster preprocessing for [BH08]-style protocols (stat. security)
- 3. Random bits in $GR(2^k, d) \Rightarrow$ daBits from $GR(2^k, d)$ to \mathbb{F}_{2^d}
 - Improved preprocessing for conversions between linear secret sharing schemes over \mathbb{Z}_{2^k} and \mathbb{F}_{2^d}

Contributions recap:

- 1. Encodings for $GR(2^k, d)$: Exploiting *d* to encode circuits of \mathbb{Z}_{2^k} .
 - Just set k = 1 to use \mathbb{F}_{2^d} to encode circuits over \mathbb{F}_2
 - Framework to construct other encodings and "translate" between them
- 2. Batch checks for (encoded) double-shares
 - Faster preprocessing for [BH08]-style protocols (stat. security)
- 3. Random bits in $GR(2^k, d) \Rightarrow$ daBits from $GR(2^k, d)$ to \mathbb{F}_{2^d}
 - Improved preprocessing for conversions between linear secret sharing schemes over \mathbb{Z}_{2^k} and \mathbb{F}_{2^d}

