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Lecture 1

An interlude of basic probability theory

These notes are not a replacement for any proper textbook on the subject.
You are encouraged to review material from proper sources, such as
the textbooks suggested at the end.

1.1 What is a sample space?

A sample space (or probability space) is two things:

i. a set Ω, together with

ii. a function f : Ω → [0, 1]

where f over Ω sums to 1.

For simplicity, say that Ω is finite, e.g. it has 10 elements.
We only require f to have the property: f (1st element in Ω) +
f (2nd element in Ω) + · · ·+ f (10th element in Ω) = 1. Sometimes,
we say “the space Ω” and by this, we always mean the pair (Ω, f ).
We allow ourselves to be sloppy when f is well-understood from the
context. Furthermore, in most cases, we write Pr instead of f . Us-
ing the same symbol “Pr” for measuring probability for all sample
spaces may cause confusion. For example, when in a calculation two
distinct sample spaces are involved – i.e. the same symbol Pr is used
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4 LECTURE 1. AN INTERLUDE OF BASIC PROBABILITY THEORY

for each of the different spaces. In this case, we try to infer things
from context. The main reason we use the same symbol Pr to refer to
different measure functions is tradition.

For now, we will focus on finite Ω’s.

An event is simply a subset of Ω, e.g. E ⊆ Ω.
For E = {e1, e2, . . . , ek}, define Pr[E ] = Pr[e1] + · · ·+ Pr[ek].
Each ei is called an elementary event or elementary outcome and cor-
responds to the event {ei}.

Probability theory aims to precisely model our real-world intuition
in formal (i.e. unambiguous) terms.

Example 1. Consider the following statement we wish to evaluate its
chance:

“The probability that the outcome of rolling a fair die is even”

Our real-world intuition is that this probability is 50%, which as
a fraction is 1

2 . What if we try to write this less informally as
Pr[fair die outcome is 2 or 4 or 6]? Is this a correct probability expression?
No, unless there is a rigorously defined sample space it is wrong (and mean-
ingless) to write Pr[. . . ] (probability of what? over what? what is the exact
thing we wish to measure?). The notation Pr performs a measurement only
over a sample space.

In real life, we may say “formal statistical model” instead of “sample space”
(same thing). Let us now define the formal model.1

Fair die: this means that the space consists of all faces of the die out-
comes Ω = {face 1, face 2, . . . , face 6} and all faces2 are equiprobable,
i.e. Pr[face 1] = 1

6 , . . . , Pr[face 6] = 1
6 . This is our model of the world.

1The gain of having a formal model is that we can forget about the real world (the real-world is complex). Now,
all calculations and inferences can be done unambiguously (any disagreement can only be raised before the mathematical
modeling).

2Usually, in a die “face 1” is a dot • , “face 2” is • • , and so on.
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The event that the outcome is an even face is E = {face 2, face 4, face 6}.
Then, Pr[E ] = 1

6 +
1
6 +

1
6 = 1

2 .

The original intuitive “Pr[fair die outcome is 2 or 4 or 6] = 1
2” co-

incides with the detailed formal treatment. It is immediate how to
go from informal to formal. When the details are completely under-
stood from context we will trade formality for readability.

It is important to remember that a sample space describes
exactly one realization of an experiment. Given the space
Ω = {face 1, face 2, . . . , face 6} defined as above can we measure in
this Ω the probability that when the die is rolled twice and the first
time the outcome is face 1 and the second time the outcome is face 2?
No, in this space Ω the probabilistic question cannot even be asked.
The elements of the space are outcomes of a single die roll. For
example the event {face 1, face 2} corresponds to the probabilistic
event that in a single (same) die roll the outcome is face 1 or face 2. If
we want to formally measure two rolls of a die then we should have
used a more complicated Ω. That is, a different model of the world; for
example, a joint model, i.e. modeling jointly two successive die rolls.
In this case, every elementary event consists of two outcomes of a
die roll. Instead of {face 1, . . . , face 6} the new space consists of pairs{
(face 1, face 1), (face 1, face 2), . . . , (face 6, face 5), (face 6, face 6)

}
.

Question Given one sample space, can we construct other, more inter-
esting spaces?

Below, we answer this question by specifying a sample space
where the question can be asked and thus the statistical calculation
can be carried out unambiguously.
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1.2 Product spaces

Let (Ω, PrΩ) be a sample space.3 Let us now define the product space.
This is just a definition (i.e. “definitions” can even be arbitrary no-
tions – no room for disagreement).

We define the product space Ω2 as: (i) Ω2 = Ω × Ω and (ii)
PrΩ2[(x, y)] = PrΩ[x]PrΩ[y], for every x, y ∈ Ω.

Remark on terminology 2. Recall that Ω2 is just one set. That is, Ω2 is
one symbol (similar to Ω) that denotes a single set.

Remark on terminology 3. We decided to subscript Pr with each of the
corresponding sample spaces to avoid confusion (one space is Ω2 whereas
the other two, each is a copy of Ω).

Example 4. Let Ω = {H, T} be the space of the outcomes when flipping
once a fair (unbiased) coin. Then, Ω2 = {(H, H), (H, T), (T, H), (T, T)}
is the set where each elementary outcome has probability 1

2 ·
1
2 = 1

4 .

Therefore, the product of uniform sample spaces is itself a uniform
space. Recall that “uniform” is a sample space where each elemen-
tary event has the same probability.

So far, a “product space” appears to be an arbitrary mathematical
definition. Arbitrariness is due to the multiplication of probabilities
of the original spaces. Why “multiply” the probabilities of Pr[H] and
Pr[T] when defining the probability of Pr[(H, T)] and not do some-
thing else?4 There is a natural relationship between product spaces
and the notion of “chance” and “probability” in real-life.

3Note that we change notation a little bit and write PrΩ, instead of the plain Pr, just to put emphasis on the fact that PrΩ
is associated with this specific Ω.

4For example, why not add the probabilities, or why not to multiply Pr[H] by 2 and Pr[T] by 42 and then add them up?
One problem is that the new set must be a sample space; e.g. after we define the probabilities of the elementary events it
should be the case Pr[(H, H)] + Pr[(H, T)] + Pr[(T, H)] + Pr[(T, T)] = 1. But this is not a serious problem at all. We can
always add everything up and then normalize each elementary event. There is a far more important reason why we decided
to define Pr[(H, T)] as Pr[H]Pr[T].
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What is a product space in practice? It corresponds to an idealized
experiment where one flips an unbiased coin once, records its out-
come, and “independently” flips another unbiased coin (or the same
– it doesn’t matter) and records its outcome. For example, if the first
outcome is “heads” and the second is “tails” this corresponds to the
element (H, T) in our product space. We note that (H, T) is a sin-
gle elementary outcome in this space; i.e., H or T are not elementary
outcomes, only (H, T) is. But there is something much deeper about
(H, T), which has to do with the fact that the “coin flips are inde-
pendent”. We will see that the theory captures amazingly well our
real-world perception. A product space embodies a special case of a
phenomenon we call statistical independence. There are many ways
in which statistical independence arises and “product spaces” is one
such way.

We are not restricted to defining the product space over the same
Ω. For two sample spaces Ω1 and Ω2, define Ω′ = Ω1 × Ω2 and
PrΩ′ [(x, y)] = PrΩ1[x]PrΩ2[y], for all elementary outcomes x ∈ Ω1

and y ∈ Ω2.
For instance, Ω1 may correspond to rolling a die and Ω2 to flipping

a coin. Then, Ω′ is the product space — aka the joint model — of the
experiment of rolling a die and independently flipping a coin.5

1.3 From intuition to definition

We will now explain what is the relationship between statistical in-
dependence and the values we have chosen to assign to the proba-
bilities in product spaces.

Humans have some intuitive idea about what is “independence”.
It means that the (statistical) realization of one event does not “af-
fect” the (statistical) realization of the other. For example, if I flip

5This term, “independently” does not yet make sense. We haven’t said what “independence” formally means. We do
this below (and then everything will make sense).
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“independently” the same unbiased coin twice I expect the outcome
of both the first and the second time to be 50-50 heads and tails, even
if I know the outcome of the other coin flip.

The quantitative problem we have to solve now is to give a for-
mal definition of independence. Whichever definition we give, this
should formalize precisely the above intuitive idea we have about
independence.

Statistical independence

Let (Ω, Pr) be a sample space. We say that E , E ′ ⊆ Ω are indepen-
dent (or statistically independent) if Pr[E ∩ E ′] = Pr[E ]Pr[E ′].

The above is just a definition. That is, we have no choice but
to accept that from this point on the term “independence” means
“Pr[E ∩ E ′] = Pr[E ]Pr[E ′]”. Nevertheless, at first glance, it is unclear
why a product of probabilities like this one formalizes the concept of
statistical independence.

Have we succeeded in transferring our intuition into quantitative
reasoning?

Statistical independence and product spaces

Now, we will show the relationship between the two notions we de-
fined/introduced above: product sample space and statistical inde-
pendence.

Intuition: Consider an experiment that has two phases. We will use
our notion of the product space to model these two phases in an ex-
periment that we like to think that it consists of two sub-experiments.
And we will argue that the way we defined the product space and
the way we defined statistical independence are such that “the two
phases do not affect each other”. To demonstrate this idea we will
define two events E and E ′ each referencing exclusively to a different
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phase of the experiment and show that E and E ′ are independent.
Here is an example that puts the above in proper context.

Verification of independence: Say that Ω2 is derived from Ω as in Exam-
ple 4. Let E =“the first coin flip is heads” and E ′ =“the second
coin flip is heads”. Let us now verify that E and E ′ are indepen-
dent. If we spell out as subsets the verbal description of the events
we have E = {(H, H), (H, T)}, and E ′ = {(H, H), (T, H)}. Note
that Pr[E ] = 1

4 + 1
4 = 1

2 and same for Pr[E ′] = 1
2 . Therefore,

Pr[E ]Pr[E ′] = 1
4 . Furthermore, the event E ∩E ′ = {(H, H)}, and thus

Pr[E ∩ E ′] = 1
4 . Therefore, Pr[E ∩ E ′] = Pr[E ]Pr[E ′], which accord-

ing to our definition of independence means that E , E ′ are (formally)
independent.

We remark that the two 1
4 we calculated above are one-over-fours

derived in two different ways. They happen to be equal in value.

Here is what we have done so far. We gave two definitions: one
for product space and one for independence. Then, we modeled two
intuitive events, one referencing only the first coin flip and the sec-
ond only the second. Finally, we observed that it happened that the
definition of product space satisfied the definition of independence
for these two events. Therefore, under these formal definitions our
“intuition about independence” coincides with our “definition of in-
dependence”.

Never confuse: the probability Pr[“HEADS in a single flip”] is a
probability calculated in the space Ω = {H, T}, whereas the prob-
ability Pr[“first coin comes HEADS”] is calculated over the space
Ω2 = {(H, H), (H, T), (T, H), (T, T)}. The first 1

2 is the probabil-
ity of the event {H} in Ω, whereas the second 1

2 is the probability
of the event {(H, T), (H, H)} in Ω2.
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Let us take things further. We can get a better understand-
ing when working with an Ω, which has more than two el-
ements. Say that Ω1 = {face 1, . . . , face 6} where all ele-
mentary probabilities are equal and say the same for Ω2 =
{face 1, . . . , face 6}. Now, consider the product space Ω′ =
Ω1 × Ω2. The event E = “the first die’s outcome is 1” is E =
{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}. Then, Pr[E ] = 1

36 +
1
36 +

1
36 +

1
36 +

1
36 +

1
36 = 1

6 . This sum of 1
36’s is not as boring as it looks like. By

definition Pr[(1, 1)] = 1
6 ·

1
6 and thus Pr[E ] = 1

6 ·
1
6 +

1
6 ·

1
6 +

1
6 ·

1
6 +

1
6 ·

1
6 +

1
6 ·

1
6 +

1
6 ·

1
6 = 1

6

(1
6 +

1
6 +

1
6 +

1
6 +

1
6 +

1
6

)
= 1

6 · 1. This factorization
where one term equals to 1 is not a coincidence.

Say, more generally, that (Ω1 = {e1, . . . , ek}, PrΩ1) and (Ω2 =
{h1, . . . , hℓ}, PrΩ2), and let the product space Ω′ = Ω1 ×Ω2. An event
that refers to only the first part of the joint experiment in the product
space can be always written as “event in the single space Ω1”︸ ︷︷ ︸

Ein Ω1

×Ω2.

But since Ω2 is a sample space PrΩ2[Ω2] = 1. Therefore, for any
event in Ω1, say for example Ein Ω1 = {e1, e2, e3} we have6

Pr
Ω′
[Ein Ω1 × Ω2] = Pr

Ω′
[(e1, h1)] + Pr

Ω′
[(e1, h2)] + · · ·+ Pr

Ω′
[(e1, hℓ)]

+Pr
Ω′
[(e2, h1)] + Pr

Ω′
[(e2, h2)] + · · ·+ Pr

Ω′
[(e2, hℓ)]

+Pr
Ω′
[(e3, h1)] + Pr

Ω′
[(e3, h2)] + · · ·+ Pr

Ω′
[(e3, hℓ)]

Now, we proceed similarly to the above and factor out appropri-
ately.

6Recall that Ein Ω1 × Ω2 is just a set. The subsets of the space Ω′ = Ω1 × Ω2 are the events whose probabilities we are
measuring.
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Pr
Ω′
[Ein Ω1 × Ω2] = Pr

Ω1
[e1]

(
Pr
Ω2
[h1] + · · ·+ Pr

Ω2
[hℓ]︸ ︷︷ ︸

this is the entire Ω2

)
+Pr

Ω1
[e2]

(
Pr
Ω2
[h1] + · · ·+ Pr

Ω2
[hℓ]

)
+Pr

Ω1
[e3]

(
Pr
Ω2
[h1] + · · ·+ Pr

Ω2
[hℓ]

)
= Pr

Ω1
[e1] · 1 + Pr

Ω1
[e2] · 1 + Pr

Ω1
[e3] · 1

= Pr
Ω1
[{e1, e2, e3}] = Pr

Ω1
[Ein Ω1]

That is,
Pr
Ω′
[Ein Ω1 × Ω2] = Pr

Ω1
[Ein Ω1]

Some attention is needed here. The probability we started to cal-
culate PrΩ′ [Ein Ω1 × Ω2] is over the product space Ω′, whereas the
probability we ended up with in this calculation PrΩ1[Ein Ω1] is the
probability computed over Ω1.

None of these remarks is surprising. When we define a product
space we multiply each element of the first Ω1 space with all the ele-
ments in Ω2 and furthermore, we multiply the corresponding proba-
bilities. Therefore, for every event that refers only to the first space in
the final product space its second part gets multiplied with all possi-
ble outcomes of the second space (in the product). But, “all possible
outcomes” themselves sum up to 1, and thus in a precise sense the
second space does not affect the final calculation.

All told a product space by definition corresponds to a space that
has statistical independence between the constituent spaces – i.e. we
can think of product spaces having “built-in” independence. For an
event E = Ein Ω1 × Ω2 and a second event E ′ = Ω1 × Ein Ω2, a
calculation similar to the one we did above yields PrΩ′ [E ∩ E ′] =
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PrΩ1[Ein Ω1] · PrΩ2[Ein Ω2]. You should make this calculation in its gen-
erality (try first for spaces that have 3-4 elements each) and formally
derive PrΩ′ [E ∩ E ′] = PrΩ1[Ein Ω1] · PrΩ2[Ein Ω2], which shows that E ,
E ′ are formally independent.7

Therefore, the two definitions, the definition of product space and
the definition of statistical independence are very well related.

Do not go any further before you understand all of the above.

Statistical independence outside product spaces

Let us now come back to the general notion of independence.

Example 5. Often times a sample space will only be defined implicitly.
That is, instead of a detailed measure-theoretic description, we may only
have some properties of the space. This is not an informal treatment. In
many common practical situations, this will be the case. The information
provided will be sufficient to carry out exact, formal calculations. Con-
sider an experiment where we choose an individual who studies at a major
university. This choice is made using a given sampling method according
to which the probability that a random student is “left-brained” is 0.6 and
“right-brained” is 0.4. Say also that the probability that the student studies
“sciences” is 0.25, and say also that the probability of being both left-brained
and studying sciences is 0.15. Then, we can see that if we sample one stu-
dent Pr[student studies sciences AND student is left-brained] = 0.15 =
0.6 · 0.25. That is, the two events “student studies sciences” and “student
is left-brained” are statistically independent.

It just “happened” that the probability measurements worked in a way
that happened to satisfy the definition of statistical independence (in which
case we informally say that there is no statistical correlation between the
events “student studies sciences” and “student is left-brained”).

A few remarks are in order.
7This statement doesn’t make sense because E and E ′ do not appear in the RHS of PrΩ′ [E ∩ E ′] = PrΩ1 [Ein Ω1 ] ·

PrΩ2 [Ein Ω2 ]. But, it’s easy to see that PrΩ1 [Ein Ω1 ] = PrΩ′ [E ] and PrΩ2 [Ein Ω2 ] = PrΩ′ [E ′].
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First, note that Pr[student studies sciences] is perfectly formal.
There is an underlying sample space, which is associated with the
sampling method. We are not given its exact description, but we
are given everything we need to know (about this space) in order to
carry out our formal calculations.

Second, here statistical independence was not induced by any
product space. There is no product space in Example 5.

A much more interesting example of “implicit” statistical indepen-
dence is given latter on in Section 1.8 on p. 26.

1.4 Disjoint versus independent events

Two events E , E ′ ⊆ Ω are disjoint when E ∩ E ′ = ∅. Are disjoint
events similar to the previous intuitive idea of independence?

“Disjointness” is commonly mistaken for “independence”.
Consider an experiment and two disjoint events E , E ′. Say, for

example, E=“a die roll is even” and E ′=“a die roll is odd”. These
events are disjoint. Knowing, that E happens we at the same time
know for sure that E ′ cannot happen. Therefore, “disjointness” is
a very strong form of dependence; i.e., in this sense disjointness
is the opposite of independence. Formally, for two disjoint events
Pr[E ∩ E ′] = Pr[∅] = 0 ̸= Pr[E ]Pr[E ′] (unless one of the events has
zero probability).

Statistically disjoint events

Here are more remarks about disjoint events. For E , E ′ disjoint events
we have Pr[E ∪ E ′] = Pr[E ] + Pr[E ′].

Here is an example showing why this is true. Let A = {1, 2, 3}
and B = {4, 5, 6}. Then Pr[A ∪ B] = Pr[{1, 2, 3, 4, 5, 6}] =
Pr[1] + Pr[2] + Pr[3]︸ ︷︷ ︸

equals Pr[A]

+Pr[4] + Pr[5] + Pr[6]︸ ︷︷ ︸
equals Pr[B]

= Pr[A] + Pr[B]. The
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general case (for general disjoint E and E ′) you can similarly verify
that for disjoint E and E ′ we have Pr[E ∪ E ′] = Pr[E ] + Pr[E ′].

We stress that:

• Pr[E ∪ E ′] = Pr[E ] + Pr[E ′] is a property of disjoint sets E and
E ′. Property means that this is a provable consequence of the
definition of sample space.

• In contrast, for independent E , E ′ we have Pr[E ∩ E ′] =
Pr[E ]Pr[E ′], which is a definition (not some provable conse-
quence).

Remark 6. It helps to remember that the “AND” (the intersection = com-
mon points) of independent events corresponds to a product, and the “OR”
(the union = put everything together) of disjoint events to a sum.

These definitions work extremely well together with reality. Let us
consider the experiment “independently flip two unbiased coins”.
Consider the event E = “the outcome of the first coin in HEADS”,
and the event E ′ = “the outcome of the second coin in HEADS”.
What is the probability that when we finish flipping both coins both
events have happened?

1.5 Conditional spaces

Let us start with a picture (cf. Figure 1.1) that gives us a new perspec-
tive on what statistical independence means.

The idea of events that affect or not the possibility of realization of
other events brings us to conditional sample spaces. We wish to quan-
tify the statement “given that event A happens what is the probabil-
ity of event B happenning?”. For example, “conditioned on (given)
the fact that the outcome is an even face of a fair die, what is the
probability that the outcome is ‘face 2 or face 1’ ?”. This concept is
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Ω Ω

Α Α Β

“percentage” of A inside Ω “percentage” of A inside Β

Figure 1.1: The percentage (fraction) of A inside Ω (left figure) is equal to the percentage of A inside
B (right figure). That is, we can now think of B as a new sample space and this corresponds to
the real-world intuition that we are measuring the probability of A happening after we know that
B already occurred. But because the percentages in the left figure (the percentage of A inside Ω)
are the same as the one in the right one (the percentage of A inside B) we do not experience any
difference regarding the realization of A in the experiment even if someone tells us in advance that
B has happened. Intuitively, this seems to be another way to say that B is independent of A.

not as simple as it originally sounds8. Somehow, we care only to
measure the probability A within the context of B, which means that
in a sense event B now itself becomes a sample space. Sample spaces
have measure 1, therefore a simple way to address this is to re-weight
things by normalizing by Pr[B]. The definition9 of “probability of A
given B” denoted as Pr[A|B] is

Pr[A|B] = Pr[A ∩ B]
Pr[B]

This is exactly what we intuitively expect (the part of A inside B).
8The first philosophical treatise of the subject was about 250 years ago by reverend Bayes; published in the Philosophical

Transactions of the Royal Society of London and is available online http://rstl.royalsocietypublishing.org/content/53/370.
9For an event B with non-zero support Pr[B] > 0.

http://rstl.royalsocietypublishing.org/content/53/370
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Then, Pr[the outcome of rolling a fair die is ‘face 2 or face 1’, given that

the outcome is an even face] =
1
6
1
2
= 1

3 .

The notation Pr[A|B] is not a probability measure when both A, B
vary. But, if we fix B then Pr[·|B] measures things that sum up to 1.

In fact, if we fix B to be a constant and we run over different events
A then we have the following Pr[B|A] = Pr[A∩B]

Pr[A] =⇒ Pr[A ∩ B] =

Pr[A]Pr[B|A]. But then, Pr[A|B] = Pr[A∩B]
Pr[B] = 1

Pr[B] Pr[A]Pr[B|A].
This immediate consequence of the definition is called Bayes Theo-
rem. Since, in our specific application “Pr[B] = constant” we have
that Pr[A|B] ∝ Pr[A]Pr[B|A]. Let us just mention that the probabili-
ties Pr[A|B] and Pr[B|A] sometimes gain physical meaning and then
we talk about the “a priori” and “a posteriori” probabilities.

Independence and conditional probability By our definitions of statistical inde-
pendence and conditional probability, if A, B are independent and
if Pr[B] > 0, then Pr[A|B] = Pr[A∩B]

Pr[B] = Pr[A]Pr[B]
Pr[B] = Pr[A]. This

Pr[A|B] = Pr[A] formalizes better the concept that the outcome of B
“does not affect” the probability of A happening. Again, we stress
that statistical independence is somewhat cumbersome. In some
sense, it expresses that the “proportion of A stays the same inside the
original space and inside B”. The notion of statistical independence is
the most important notion over all probability theory. It gives proba-
bility theory meaning and context in places where the so-called gen-
eral Measure Theory never cares to look at10.

Conditional probability and an important consequence The formula Pr[A|B] =
Pr[A∩B]

Pr[B] is sometimes called “definition of conditional probability”.
10Measure Theory is a branch of modern mathematics to which probability theory can be understood as a special case.

What we discuss here may become problematic when instead of a finite Ω we have an infinite one. Several types of infinity
then become of interest. Furthermore, even over “simple” Ω’s, e.g. Ω = [−1, 1], not every subset of Ω can be associated
with probability measure. You read this and now you can promptly forget it.
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This is just a definition and nothing more than that. Now, we state
and prove Theorem 7. This is a mathematical statement (i.e., a prop-
erty derived by manipulating the definitions).

We say that A1, . . . , Ak ⊆ Ω is a partition of Ω if for every i ̸= j ∈
{1, . . . , k} we have that Ai ∩ Aj = ∅ and A1 ∪ A2 ∪ · · · ∪ Ak = Ω.

Α1

Α2

Α3

Α4

Α5

Α6

partition of Ω using 6 subsets

Α1

Α2

Α3

Α4

Α5

Α6

E

how does the event E looks like 
inside the partition of Ω

E

the partition of Ω induces a partition on E

the part of E inside A6
the part of E inside A5

the part of E inside A3

Figure 1.2: A partition A1, A2, . . . , A6 of Ω induces the partition E ∩ A1, E ∩ A2, . . . , E ∩ A6 of E .

Here is an easy exercise (just use the definition of Pr[E ]). Let dis-
joint E , E ′, i.e. E ∩ E ′ = ∅. Then, Pr[E ∪ E ′] = Pr[E ] +Pr[E ′]. Further-
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more, show that in general (i.e. not necessarily for disjoint E ′′, E ′′′) it
holds that Pr[E ′′ ∪ E ′′′] = Pr[E ′′] + Pr[E ′′′]− Pr[E ′′ ∩ E ′′′] (in particu-
lar, Pr[E ′′ ∪ E ′′′] ≤ Pr[E ′′] + Pr[E ′′′]).

Theorem 7. Let a sample space Ω, a partition of the space A1, . . . , Ak, and
an event E ⊆ Ω. Then,

Pr[E ] = Pr[E|A1]Pr[A1] + Pr[E|A2]Pr[A2] + . . . + Pr[E|Ak]Pr[Ak]

Proof. Note, that the partition of Ω induces a partition on E ; i.e., E can
be thought of as gluing together the pieces of E as per the partition of
Ω. Formally, E =

(
E ∩ A1

)⋃ · · ·⋃ (
E ∩ Ak

)
and any two

(
E ∩ Ai

)
∩(

E ∩ Aj
)
= ∅ (draw a picture with three sets A1, A2, A3 to visually

verify this).
Since for two disjoint events A and B, Pr[A ∪ B] = Pr[A] + Pr[B]

and the same rule generalizes to unions of more than two sets, we
have Pr[E ] = Pr[

(
E ∩ A1

)⋃ · · ·⋃ (
E ∩ Ak

)
] = Pr[E ∩ A1] + . . . +

Pr[E ∩ Ak]. Now, apply the condition probability definition: Pr[E ] =
Pr[E|A1]Pr[A1] + . . . + Pr[E|Ak]Pr[Ak].

Theorem 7 is used when we can easily compute E conditioned on
the fact that say A1 and A2 have occurred, and we also know the
probability measure of A1, A2.

1.6 Random variables

The spaces we encountered so far contain elements without any nu-
merical meaning. For example, the space of a fair die roll Ω =
{face 1, face 2, . . . , face 6} does not consist of numbers. Of course,
we could have written it as Ω = {1, 2, . . . , 6}, but it would have been
the same. The reason is that so far we did not use the outcomes as numbers;
e.g. we did not add them up.

For us, “use as numbers” means to add them up, multiply them,
and compute averages. We kept writing “face 1” instead of 1 to em-
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phasize that there was no other intended calculation with the out-
come.

A random variable X is a function X : Ω → R. We use the term
“variable” to talk about an object, which is a function for historical
reasons.

For example, X(face 1) = 1, X(face 2) = 2, . . ., X(face 6) = 6.
Not all random variables have such a trivial connection to sam-

ple spaces. We typically care about one experiment, i.e., one sample
space, over which we define many random variables.

We denote by X(Ω) the set of all possible values of X (aka the
image of X). The expected value (or expectation) of X is defined as

E[X] = ∑
α∈X(Ω)

Pr[X = α] · α

That is, E[X] is the average value of X weighted with probability.

Remark on terminology 8. In addition to the historical reason, we call X
a “variable” because when it appears inside the “Pr[. . . ]” notation it looks
like a variable. For example, Pr[X(ω) = 5]. An ω ∈ Ω is sampled and we
consider the event associated with X(ω) = 5. This looks as if we sample
at random a value directly from X(Ω). To make things more intuitive we
abuse notation and write X instead of X(ω). Then, X really looks like a
variable that assumes a random value, and we can instead write Pr[X = 5].

Remark on terminology 9. Let us consider the example of the fair die roll
and the random variable X defined above. Then, the expression “X ≥ 4”,
which is the same as “X(ω) = 4”, is satisfied by ω = face 4, ω = face 5,
and ω = face 6. That is, Pr[X ≥ 4] = Pr[{face 4, face 5, face 6}] = 1

2 .
As a side remark, useful when proving Chebychev’s inequality later on, is
that “|X(ω)| ≥ 4” is satisfied by the same elementary outcomes of Ω as
the expression “X(ω)2 ≥ 16”.

In our fair die example E[X] = 1 · 1
6 + . . . + 6 · 1

6 = 3.5.
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Remark 10. Our first example is an anti-example. In this case, the expec-
tation is meaningless. There is no interesting physical meaning in the value
3.5; in the sense that we do not really “expect” that a fair die outcome is 3.5.
We will see that there is a reason for this.

Another “averaging” quantity is that of variance of X defined as

Var[X] = E
[
(X − E[X])2]

We stress that E[X] is just a number, e.g. E[X] = 42. Whenever we
see an “E” in front of a random variable then this “E” acts like an
integral (or summation if you like) turning X into a number.

The expression “(X − E[X])2” is a new random variable. If E[X] =
42, then we have a new function: Y(ω) = (X(ω)− 42)2. New ran-
dom variables are built by composing simpler ones.

The variable Y = (X − E[X])2 measures the distance of a X from
its average (expected value). Roughly speaking, E[(X − E[X])2] is
the average of the distances of X from its average.

Here is why Remark 10 happens. In the case of the fair die, this
number is very large, i.e. Var[X] = Pr[(X − 3.5)2 = 6.25]6.25 +
Pr[(X − 3.5)2 = 2.25]2.25+Pr[(X − 3.5)2 = 0.25]0.25. This is because
the possible values of the function/random variable Y = (X − E[X])
are {6.25, 2.25, 0.25}. But, Pr[(X − 3.5)2 = 6.25] = Pr[|X − 3.5| =
2.5] = Pr[X = 1 OR X = 6] = 2

6 = 1
3 . Similarly, we get

Pr[(X − 3.5)2 = 2.25] = 1
3 and Pr[(X − 3.5)2 = 0.25] = 1

3 . Thus,
Var[X] ≈ 2.91, which is “very large” compared to its possible as-
sumed values in the interval [1, 6].

Variance is an important parameter that describes the behavior of
a random variable. If the variance (i.e. the expected squared distance
from the expectation) is high then the value of the expectation tells
nothing too interesting. Read over Remark 10.

At the end of this section, we discuss an example that is indicative
of the role of variance. Some more, and very interesting examples,
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explaining the role of variance in sampling and estimation will be
developed in the sequel in Sections 1.11 and 1.12. Before we discuss
these examples we would like to discuss some important properties
of the expectation and variance.

One property of expectation is that by definition is a linear operator.

Lemma 11. Let X, Y be random variables over the same space Ω and c ∈ R.
Then,

E[cX] = cE[X] and E[X + Y] = E[X] + E[Y]

(or equivalently E[cX + Y] = cE[X] + E[Y]).

The proof is immediate by the definition of E.
The same is not true for variance. Recall that formally when we

say “Let X, Y” we mean “for all X, Y”. Therefore, to prove11 that the
statement is not true for variance, we should prove that the following
is true:

NOT
(

for all X, Y we have Var[X + Y] = Var[X] + Var[Y]
)

=there is X, Y such that we have Var[X + Y] ̸= Var[X] + Var[Y]

An example (formally) proves existence. You should make sure that
you can give an example showing that Lemma 11 does not hold for
variance.

An indicative example of the role of expectation and variance

Consider two betting games where in each we press a button and we
either get a reward or we pay.

Betting game I: With probability 1/10 we uniformly sample an integer
from {1, 2 . . . , 10}. If the number is from 1, 2, 3, 4, then we pay $2. If
the number is from 5, 6, 7, 8, 9, 10 then we gain $4.

11Recall that “NOT (for all + logical statement)”= “there exists + NOT(logical statement)”. For example, “the negation of
every day in New York is sunny” is equivalent to “there exists a day in New York, which is not sunny”.
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Betting game II: In this game, we press the button independently
(i.e. product space) twice. In each time with probability 1/10 we
get a number from {1, . . . , 10} and if it is at most 4 then we pay $1,
whereas if it is 5 or bigger we gain $2.

We have three questions to answer.

• Would you play in any of these betting games?

• Does it matter which game you play?

To answer the first question we determine the expectation. If the
expectation is positive then this means that on average we make a
profit and it makes sense to play. The expectation of which variable?

For the betting game I, the variable X = −2 with probability 4/10
and, X = 4 with probability 6/10. That is, E[X] = −2 · 4

10 + 4 · 6
10 =

16
10 = 1.6.

For betting game II, Y1 = −1 with probability 4/10 and Y1 = 2
with probability 6/10, this is the gain/loss of the first trial. Similarly,
for the second trial Y2 = −1 with probability 4/10 and Y2 = 2 with
probability 6/10. The total gain/loss is Y = Y1 + Y2. The expected
value of Y is E[Y] = E[Y1 + Y2] = E[Y1] + E[Y2] = (−1 · 4

10 + 2 · 6
10) +

(−1 · 4
10 + 2 · 6

10) = 0.8 + 0.8 = 1.6
Therefore, in both betting games in expectation, we have a profit

of 1.6 dollars. Thus, it does make sense to play in any of the betting
games. In practice, to “see” this gain we must play many times and if
we average over the number of times we played then on the average
we will see that each time we played we gained the amount of $1.6.

Since the expected values are the same, does this mean that both
games are equally good in terms of profit?

Here is where the role of variance is important.
If we do the calculation we find that Var[X] = 8.64, whereas

Var[Y] = Var[Y1] + Var[Y2] = 2 × 2.8 = 5.6. That is, in both cases,
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we have in expectation the same profit, but in Betting Game II the
variance is much smaller. In other words and informally speaking,
if we play the game once we are better off to play in Betting Game
II because this profit will be realized since statistically, we are much
closer to the expected profit.

Independent random variables

Suppose that X, Y are random variables defined over the same sam-
ple space Ω. We will say that X, Y are independent if the following
corresponding events are independent12 that is

for all x ∈ X(Ω), y ∈ X(Ω), Pr[X = x AND Y = y] = Pr[X = x]Pr[Y = y]

Therefore, in order to say that two variables are independent this
should hold for every possible value the random variables assume.

Example Consider the sample space of independently rolling a fair die
twice Ω = {(1, 1), (1, 2), . . . , (6, 6)} where the probability of each ele-
mentary outcome (i, j) is Pr[(i, j)] = 1/36. Now, let X be the random
variable which is 1 if the first die roll is even and 0 otherwise. Also,
let Y be the random variable which is 1 if the second die roll is equal
to 3 and 0 otherwise. Then, the event “X = 1” corresponds to the set
{(2, 1), (2, 2), . . . , (2, 6), (4, 1), (4, 2), . . . (4, 6), (6, 1), . . . , (6, 6)}. We
can similarly, calculate the sets corresponding to the events X = 0,
Y = 1, and Y = 0. As we saw before, and after doing detailed calcu-
lations, we can show that Pr[X = i, Y = j] = Pr[X = i]Pr[Y = j] for
all i-j combinations where i = 0, 1 and j = 0, 1.

If X, Y are independent then we can show that E[XY] = E[X]E[Y].
You should verify that this equality holds before going any further.
Note that this does not hold for arbitrary X, Y (show this!). Starting

12Before we defined independent events. Now, we use random variables to designate events.
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from here, it does not take long to see that if X, Y are independent
then Var[X + Y] = Var[X] + Var[Y].

These simple facts are left to the reader to verify.

Random variables we care about The random variable that uniformly ranges
over {1, 2, 3, 4, 5, 6} (i.e. the fair die) is uninteresting. There are many
interesting random variables in Statistics, which we are not going to
discuss. For the courses where this set of notes is used, we have some
very specific random variables of interest.

We say that X is an indicator random variable (RV)13 if it takes values
0, 1. Say that Pr[X = 1] = p and Pr[X = 0] = 1 − p. Then, observe
that E[X] = p.

The reason we care about indicator variables is that they will indi-
cate success (=1) and failure (=0) of various events of interest.

Also, by summing up indicator variables we can count the number
of successes. For example, suppose that we have the indicator RVs
X1, X2, X3, X4, X5, say all of them parameterized with probability p =
0.1. Then, the “number of successes” is a new random variable X =
X1 + X2 + X3 + X4 + X5. The expectation of X is easy to compute by
the linearity of expectation: E[X] = E[X1 + X2 + X3 + X4 + X5] =
E[X1] + E[X2] + E[X3] + E[X4] + E[X5] = 0.1 · 5 = 0.5. If instead, we
had n indicator variables each distributed with probability p then
E[X1 + . . . + Xn] = n · p.

The variance of an indicator variable X1 with parameter p is
Var[X1] = E

[
(X1 − E[X1])2

]
= E[X2

1]− E[X1]2. Observe that X2
1 = X1

because X1 takes only values 0 and 1. That is, Var[X1] = E[X1] −
E[X1]2 = p − p2 = p(1 − p).

Is it true that Var[X1 + . . . + Xn] = np(1 − p)?
No, not in general14, unless the Xi’s are pairwise (i.e. every two

13In the literature these are also called Bernoulli trials.
14For example, if X1 = X2 and Pr[X1 = 1] = 1/2 then E[X1 + X2] = 2 · 1

2 = 1, but Var[X1 + X2] = Var[2X1] =

E[4X2
1 ]− E[2X1]

2 = 4Var[X1] ̸= 2Var[X1].
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of them) independent. This is a really very important point in our
narrative.

It is not sufficient to know that the Xi’s follow a certain probability
distribution when we look at each of them in isolation.

For example, it may be the case that X1 = X2. Then, E[X1 + X2] = 2p,
because expectation is linear regardless of any correlations between
the random variables. But is it true that Var[X1 + X2] = Var[X1] +
Var[X2]?

We conclude this section by leaving two tasks to the reader.
First, you should verify that the Xi’s are pairwise independent

then Var[X1 + . . . + Xn] = np(1 − p).
Second, try to understand if there exist variables, which are pair-

wise independent but they are not three-wise independent15.

1.7 How do we express things and why do we write them as such

Probability theory was properly formalized (axiomatized) by Kol-
mogorov16 in the 1930s. Before the 1930s people were also reasoning
about probability. For example, Bayes’ article was written 150 years
before Kolmogorov’s work. When the world was young, probability
was a mess, oftentimes wrong, and not usable. The pre-Kolmogorov
era inherited us the notation Pr[. . .]. In fact, it inherited us more than
the notation – a way of expressing ourselves about probabilities.

Think about it. We can define Ω = {face 1, face 2, . . . , face 6}, then
Pr[face i] = 1

6 for every i = 1, 2, . . . , 6. Then, say that X(face i) = i.
Finally, define the event E =

{
ω | X(ω) is even

}
= {2, 4, 6}. That is,

the event is defined by the predicate “X(ω) is even”. At the end, we
calculate Pr[E ] = 1

6 +
1
6 +

1
6 = 1

2 .
15A collection of random variables X1, . . . , Xn is three-wise independent if for every distinct three variables Xi , Xj, Xk ∈

{X1, . . . , Xn} and for every x, y, z ∈ Ω we have Pr[X = x AND Y = y AND Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z].
Note that pair-wise, three-wise, four-wise, and so on, are restrictions of the notion of independence of all variables (which
coincides with n-wise independence).

16See http://www.kolmogorov.com/Foundations.html.

http://www.kolmogorov.com/Foundations.html
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Now, instead of all these, we could have simply written,
Pr[X is even] = 1

2 , which means exactly the same thing and can replace
the whole small paragraph above. Even those obsessed with math-
ematical formalism would have found “Pr[X is even] = 1

2” much
cleaner than the detailed formal description. We lose nothing in for-
mality if the translation of “Pr[X is even] = 1

2” can be done in our
heads.

Often times we may begin by writing, for example: “Consider the
random variables X, Y”. This implies that there is an underlying
sample space associated with these random variables. When obvi-
ous we will not explicitly mention the space (but it is always there).

Another point of confusion is when one says “random variable”
instead of simply saying a “sample”. For example, consider a space
that consists of binary strings {00, 01, 10, 11} each with the same
probability. Then, someone may write Pr[X = 00], calling X a “ran-
dom variable” (instead of calling it “sample”). X is not real-valued17

and we cannot compute expectations or variances for such an X.
However, we will occasionally abuse terminology and call X a “ran-
dom variable”.

Finally, we will use the terms “distribution” and “random vari-
able” interchangeably. In fact, one could have introduced terms such
as “probability mass/density”, “probability distribution”, and so on.
This type of terminology is unnecessary for our purposes. We will
also not explain why a function is different from a distribution. None
of these are hard to explain, but they are not necessary for us.

1.8 Examples of “hidden” statistical dependence and independence

Let us now discuss some very interesting examples.18.
17Advanced comment: we can define X’s over measurable spaces (not necessarily R), but this X in the example is not

measurable in any interesting way.
18Reminder: This material is copyrighted and in particular the treatment in this example. Any use is prohibited, unless

this set of notes is explicitly cited or with the written permission of the author.
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Consider three indicator random variables X1, X2, X3, and their
sum, which is calculated over the integers, X = X1 + X2 + X3.

Now, let us define two other random variables. Consider the rep-
resentation of the sum of the Xi’s in binary notation. Their sum can
be 0, 1, 2, 3, which in binary is 00, 01, 10, 11. We associate the first
(most significant) digit of X with the random variable b1 and the sec-
ond digit with b0. That is, X is written in binary as b1b0; i.e. the new
random variables b1 and b0 take {0, 1} values and put together they
form the binary numbers 00, 01, 10, 11.

Do you think that the digits of the sum of independent random
variables are independent?

Are the digits of the sum statistically correlated with each other? If b0 and b1 are inde-
pendent19 then for all α, β ∈ {0, 1} holds

Pr[b0 = α, b1 = β] = Pr[b0 = α]Pr[b1 = β]

(or that Pr[b0 = α|b1 = β] = Pr[b0 = α]).
We begin by determining the probability that X equals

00, 01, 10, 11. X = 00 (i.e. b1 = 0 and b0 = 0) only when X1 = X2 =
X3 = 0, i.e. Pr[X = 00] = 1

8 ; X = 01 if exactly one of the Xi’s is 1, i.e.
Pr[X = 01] = 3

8 ; similarly, Pr[X = 10] = 3
8 and Pr[X = 11] = 1

8 .

Now, let us come back to checking the independence of b1 and b0.
First check b0 = 0 and b1 = 0. The summations that correspond to

b1 = 0 are {00, 01} and to b0 = 0 are {00, 10}, and thus Pr[b0 = 0, b1 =
0] = Pr[X = 00] = 1

8 ̸= 1
4 = 1

2 ·
1
2 = Pr[b0 = 0]Pr[b1 = 0]. Since there

exist α and β such that Pr[b0 = α, b1 = β] ̸= Pr[b0 = α]Pr[b1 = β]
the variables b0, b1 are statistically dependent. Therefore, although
the digits b0 and b1 are the sum of statistically independent random
variables, these digits statistically depend on each other. This is the

19In Pr[X = 1, Y = 2] comma means “AND”. That is, Pr[X = 1 AND Y = 2].
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first non-trivial fact about statistical intuition. It deepens our under-
standing of how a random sum statistically looks like20.

All told, as random variables the digits b0 and b1 depend on each
other because we can find values for b0 and b1 where the definition
of independence does not hold. On the other hand, there are certain
pairs of values for which the two digits do not depend on each other.

Mastering the above two examples significantly boosts one’s un-
derstanding of statistical dependence and independence.

Let us take things just one step further. Digit b0 depends on b1 and
this is witnessed by a difference between 1/4 and 1/8. What if the
number of variables in the summation increases? Do the following
exercise. Consider four indicator variables X1, X2, X3, X4. The pos-
sible sums written in binary are 000, 001, 010, 011, 100. Let us now
associate the most significant bit with b2, the middle with b1, and the
least significant one with b0. Then, are b0 and b1 statistically depen-
dent? If yes, does this “dependence” look less important to you than
the one before?

Are the digits b1, b0 of the sum X = X1 + X2 + X3 statistically dependent with the variables

Xi that form the sum? This question is very interesting for someone who
wants to understand what statistical independence means.

Does b0 statistically depend on X1? We calculate Pr[b0 = 0, X1 =
0] = 1

4 = Pr[b0 = 0]Pr[X1 = 0]. Same for Pr[b0 = 0, X1 = 1] and
Pr[b0 = 1, X1 = 0] and Pr[b0 = 1, X1 = 1]. Therefore, the least signifi-
cant digit is independent of the value of X1 (or of any other variable).
Can you see why intuitively this is the case?

The same observation does not hold if instead of b0 we consider b1.
It also does not hold if instead of only one variable X1 we consider

20For example, if it were the case that the digits of a random sum were independent then it would have been the case
that we could have put together a simple statistical model to sample a random sum directly! (i.e. without first sampling
random Xi’s and then adding them up!)
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more, e.g. X1, X2, X3 (i.e. when we consider the probability condi-
tioned on X1 = β1, X2 = β2, X3 = β3).

Study all these examples very carefully.

Statistical dependence does not mean that things are “dependent”
in some natural/everyday commonsense notion. Commonsense
suggests that the digits of a summation depend on the variables
we are summing. Statistically, dependence means that “knowing
the value” of one variable affects what we “predict” about a digit
of the summation (of more variables). It turns out that we learn
nothing about the LSB when we know the value of one of the
summands. The same is not true about more significant digits.
For example, if we are summing three independent binary vari-
ables, the probability that the MSB (second digit) is 1 with differ-
ent probability if we know that one of them is 0 or whether we
know that the same variable is 1.

1.9 Common distributions and useful tools

The most basic distribution is the Bernoulli trial, which assumes val-
ues {0, 1} with parameter p, where p is the probability of 1.

The distribution that quantifies the probability of k successes
(i.e. k-many 1s) “until the first failure” using i.i.d. Bernouli trials is
called geometric distribution.

We have a special interest in the behavior of sums of i.i.d. Bernoulli
trials. This measures the number of 1s in X = X1 + X2 + · · · + Xn,
and is called the binomial distribution.

Task for the reader Given n and p the probability of Xi = 1 make a plot
(e.g. use R or Mathematica) of the magnitude of f (k) = Pr[X = k]
and explain where this distribution assumes its highest value. Which
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of the continuous distributions you learned in your first class that
involved statistics has a similar shape?

For the geometric and the binomial distribution we are interested
in understanding their “tails” (tail = what happens away from E[X]).

Here are some very useful expressions and inequalities.

• For an event E ⊆ Ω and its complement (with respect to Ω) ,
i.e. Ē = Ω − E , we have Pr[Ē ] = 1 − Pr[E ].

• (union bound) For any collection (i.e. arbitrarily correlated) of
events E1, . . . , En we have Pr[E1 ∪ · · · ∪ En] ≤ Pr[E1] + · · ·+Pr[En]

•
(n

e

)k ≤ (n
k) ≤ nk, where e ≈ 2.718

• limn→∞
(
1 − 1

n

)n
= 1

e

• 1
4 ≤

(
1 − 1

n

)n ≤ 1
e

1.10 Important inequalities

The most basic inequality is Markov’s.

Theorem 12 (Markov’s inequality). Let X be a non-negative random
variable and c > 0 an arbitrary real number. Then,

Pr[X ≥ c] ≤ E[X]

c
This inequality relates probability of a random variable attaining

high values with its expectation.
This probability is as measuring what happens when we “do the

experiment once”, whereas the expectation is an average21.
Markov’s inequality is so general that it cannot be super useful on

its own (there are only a few restricted cases where it is used on its
21In fact, “probability” is also an averaging quantity of some sort, but if this remark confuses you, then you read it and

promptly forget it.
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own). For example, let us replace c with another constant c = kE[X].
Then, Pr[X ≥ kE[X]] ≤ 1

k . This quantifies how unlikely it is for a
single execution of the experiment to yield a value for the variable
that is k times away from its expectation.

Here is what restricts its applicability. Let X = X1 + X2 + . . . +
X10, where E[Xi] = 0.5 for Xi’s, where each Xi is an independent
coin flip of an unbiased coin (say 1=HEADS and 0=TAILS). Then, X
counts the number of HEADS. Note that E[X] = 5. Then, Pr[X ≥
k · 5] ≤ 1

c . Think of c as indicating a probability of error — i.e. how,
far away from the expectation we go. To bound this probability using
Markov by less than 50% we should set k > 2. This means that that
the event is X > 10 which can never happen. It is amusing that
Markov is telling us that this event can happen with probability at
most e.g. 49%. But we already know that this event can happen with
probability at most 0% because we only have 10 variables. We do not
need any inequality to tell us this.

Markov is definitely not useless. It is helpful in certain cases.
Moreover, it is very important in deriving new, stronger inequalities,
but in more restricted settings 22.

If we have information about the variance of a variable, and this
variance is small, then much more can be achieved.

Theorem 13 (Chebyshev’s inequality). For every a random variable X
and c > 0 holds that

Pr[|X − E[X]| ≥ c] ≤ Var[X]

c2

This inequality relates: (i) the probability of the value of X in one
realization of the experiment, (ii) its expectation, and (iii) its variance.

22A restricted setting is interesting. Generic/abstract and unrestricted mathematical settings typically describe
generic/kind-of-obvious facts.



32 LECTURE 1. AN INTERLUDE OF BASIC PROBABILITY THEORY

We can prove Chebyshev’s by directly substituting a new random
variable Y = (X − E[X])2 for X in Markov’s inequality (do this re-
calling that Pr[(X − E[X])2 ≥ c2] = Pr[|X − E[X]| ≥ c] for c > 0).

To prove Markov’s is also not hard (this proof can be skipped at
first reading).

Proof of Theorem 12 for discrete random variables. Define f (x) = 0 for
all x < c, and f (x) = 1 for all x ≥ c. Then, although we think
of X taking random values it always holds that c · f (X) ≤ X. It is
easy to see that for RVs Y, Z if Y ≤ Z then E[Y] ≤ E[Z]. Therefore,
c · f (X) ≤ X =⇒ E[c f (X)] ≤ E[X] =⇒ cE[ f (X)] ≤ E[X].

E[ f (X)] = ∑
x

Pr[ f (X) = x]x = Pr[ f (X) = 1]1 + Pr[ f (X) = 0]0

= Pr[ f (X) = 1] = Pr[X ≥ c]

Therefore, cE[ f (X)] ≤ E[X] =⇒ Pr[X ≥ c] ≤ E[X]
c .

Question: Modify Betting Game I and Betting Game II (cf. p. 21) in the
following way: consider the payments to happen with probability
1/10 and the profits with 9/10 and maintain the same loss and profit
values as in the original games. Recalculate the expectations and
variances and then use Chebychev’s inequality to derive which of the
two betting games is more likely (and how much more likely) with a
single instantiation of the game to have profit (i.e. the corresponding
random variable to be bigger than 0).

1.11 The concentration of measure phenomenon

Suppose that we perform 1000 independent, unbiased coin flips. If X
is the random variable whose value is the total number of HEADS,
then E[X] = 500. In practice, we do not care only about the average
but mostly about the value of X with high probability.
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Remark on terminology 14. “High probability” is loosely defined and
is determined by context. In some cases it means any constant above 1

2 ,
e.g. 2

3 . The term “constant” is also undefined unless there is some quantity
growing to infinity. For example, consider a probabilistic experiment23, pa-
rameterized by n, where n is the number of coin flips. More often, “high
probability” means probability 1 − 1

n or 1 − 1
n2 or 1 − 1

10n ; e.g. for n = 10
we have 1 − 1

n = 0.9 whereas 1 − 1
10n = 0.9999999999. Depending on the

context we may want the “high probability” to converge polynomially fast
to 1, or in other contexts “high” means exponential fast convergence to 1.
Also, we may write almost surely (a.s.) instead of “with high probability”.

We continue with the goal of understanding the value of X a.s. in
the experiment where we i.i.d. flip n unbiased coins. Let Xi ∈ {0, 1}
be the random variable, which is 1 if and only if the i-th coin flip
is “HEADS”. Then, we have X = X1 + · · · + Xn and thus E[X] =
E[X1] + · · ·+ E[Xn] =

1
2 + · · ·+ 1

2 = n
2 .

We are ready to derive our first probability measure concentration
result, which is on its own quite impressive. By measure concentra-
tion we mean that most of the probability is around its expectation.
“Around” means in a small interval centered on expectation.

For the calculation with Chebyshev we will need two facts. First,
the variance of each Xi is Var[Xi] = E[X2

i ] − E[Xi]2, and since Xi ∈
{0, 1}, we have Var[Xi] = E[Xi] − E[Xi]2 = 1

2 −
(1

2

)2
= 1

2 −
1
4 =

1
4 . Finally, since the Xi’s are independent we have that Var[X] =
Var[X1] + · · ·+ Var[Xn] =

n
4 .

Now, let us put everything together.

Theorem 15 (Chebyshev sampling). Let ε, p > 0 be constants. Consider
n i.i.d. Bernoulli trials X1, . . . , Xn, where E[Xi] = p. Let X = ∑n

i=1 Xi,

23We already saw that every intuitively described experiment corresponds to a formal sample space
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then,

Pr
[
X > (1 + ε)E[X]

]
< O

(
1
n

)
Proof. Note that Pr

[
X > (1 + ε)E[X]

]
< Pr

[
X > (1 + ε)E[X] or X <

(1 − ε)E[X]
]
= Pr

[∣∣X − E[X]
∣∣ > εE[X]

]
. Therefore, by Chebyshev

we have Pr
[∣∣X − E[X]

∣∣ > εE[X]
]
≤ Var[X]

(εE[X])2 = nVar[X1]

(εnE[X1])
2 = Var[X1]

nε2E[X1]2
=

1
n ·

p−p2

ε2 p2 = 1−p
ε2 · 1

n = O
( 1

n

)
, since ε and p are constants.

Thus, just by computing the variance we can show that the prob-
ability of going e.g., 0.1% above the average decreases polynomially
with the number of variables (in practice, each variable Xi corre-
sponds to a repetition of an experiment, a coin flip, or . . . ).

Similarly, to Theorem 15 we obtain that Pr
[
X < (1 − ε)E[X]

]
<

O
( 1

n

)
. Therefore, after “one full trial” for X (which consists of n

small trials, one for each Xi), the probability that X falls outside
[(1 − ε)E[X], (1 + ε)E[X]] is at most O(1/n) and thus with proba-
bility 1 − O( 1

n), X is inside [(1 − ε)E[X], (1 + ε)E[X]] (“concentrated
around E[X]”).

The probability measure, which in total is 1, is sharply concentrated
around E[X].

The calculation in the proof says in fact more (in this document
“proofs” are just calculations). Even if the variables are pairwise in-
dependent (i.e. not fully independent) we still have the same conclu-
sion. The reason is that pairwise independence implies E[XiXj] =
E[Xi]E[Xj], which in turn suffices for showing Var[X] = Var[X1] +
· · ·+Var[Xn]. Recall that the latter in particular means that the covari-
ance is Cov[Xi, Xj] = E[XiXj]− E[Xi]E[Xj] = 0. In other words, vari-
ables that are uncorrelated, as measured by covariance24, do exhibit
measure concentration phenomena. We will see in the next section

24Note that zero covariance does not preclude statistical correlations of other forms.
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that full independence (i.e. stronger than pairwise independence)
suffices to obtain exponential convergence to 1 (not only 1 − 1

n).

How close to the true concentration of n i.i.d. variables is this bound? Concentration
around the expectation with probability 1 − O( 1

n) is very high, but
it may be the case that we can do even better when we have inde-
pendent random variables – recall that the bound holds even if the
variables are pairwise independent.

Here is a computer experiment (in Mathematica) that goes as fol-
lows: (i) sample independent Bernoulli trials Xi, for i = 1, . . . , 105

with probability parameter 1
2 ; (ii) at the end sum them up; (iii) re-

peat fresh starting from (i) for 1000 times. That is, sample X =
X1 + · · ·+ X105 for 1000 times and then plot a histogram (Figure 1.3).

0 20000 40000 60000 80000 100000
value of X

0.001

0.002

0.003

0.004
relative frequency

Figure 1.3: Histogram for the value of X = X1 + · · ·+ X105

We can see that the mass of the histogram we plotted is sharply
concentrated around the expectation point. Now, if we magnify the
region around the expectation we get a clearer picture of the same
experiment (Figure 1.4).

We observe that in this computer experiment sharp concentration
did happen around the expectation. In the proof of Theorem 15 we
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49600 49800 50000 50200 50400
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Figure 1.4: Same histogram as in Figure 1.3 but now magnified around X = 50000. Observe that
no single one among these 1000 repetitions of the experiment resulted anything smaller than 49500
or bigger than 50500.

have that the precise constant (in front of 1/n) we calculated in the
bound is 1−p

ε2 . Here, p = 1/2 and let us set ε = 0.01. Then, by
applying Theorem 15 we have that with probability which is at most

1
20000 = 0.00005 we can have the value of X is bigger than 50500 or
smaller than 49500.

All these sound very good, since the probability 0.00005 of being
outside the concentration interval appears to be very small. But, our
theorem calculates that this happens with probability at most 0.00005.
Can it be that our theorem is not very strong? Maybe a better analy-
sis could have resulted in a better (better=smaller) upper bound. For
instance, maybe the truth is that the real upper bound on this proba-
bility is even smaller, e.g. 0.0000000000000000005. Of course, at most
0.0000000000000000005 also means at most 0.00005, i.e. the questions
we ask here do not challenge whether we have proved Theorem 15
correctly. We challenge whether this bound can be improved.

Let us make the following thought experiment. Let us suppose
that 0.00005 is the true upper bound; i.e. the probability is exactly
equal to 0.00005. Then, the probability that X ∈ [49500, 50500] is
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1 − 1

20000

)
and the probability that all of 100000 independent execu-

tions are all inside [49500, 50500] would have been
(
1 − 1

20000

)100000
=((

1 − 1
20000

)20000
)5

≈ 1
e5 ≈ 0.0067. That is, the probability that

all 100000 independent executions of the experiment are inside
[49500, 50500] is about 0.67%. Recall that in our computer simula-
tion/experiment it happened to be the case that all of the executions
were inside [49500, 50500]. Now, one of two things has happened.
Either we were unlucky and we just hit the event that happens with
0.67% or it is just the case that the 0.00005 is not a “tight” upper
bound (“not tight” = “can be improved to something smaller”).

1.12 Strong measure concentration from independence

We saw that repeating an experiment with two outcomes (0 and 1)
can result in concentration 1 − O(1/n) around the expected value.
Recall that for this it was not necessary to have “full independence”.
Rather, pairwise independence between the executions was suffi-
cient. Now, we show that there is an amazingly strong concentration
around the expectation when we make “full use” of independence
among the Xi’s.

Let X1, . . . , Xn be independent and identically distributed (i.i.d)
Bernoulli trials with parameter p (i.e. {0, 1} distributed random vari-
ables that come 1 with probability p). Let also X = X1 + · · ·+ Xn be
their sum. We also have that E[X] = np. We wish to upper bound
the probability Pr[X > ∆], for a ∆ that we will choose conveniently
later on. We remark that if we have any monotonically increasing
function F then Pr[X > ∆] = Pr[F(X) > F(∆)], because the event
“X > ∆” is just a set that satisfies “. . .” inside “Pr[. . . ]” for the cor-
responding values of X, which are exactly the same as the values in
e.g. “X + 1 > ∆+ 1” or “2X > 2∆” or more generally “F(X) > F(∆)”.
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Therefore, for any λ > 0 we have

Pr[X > ∆] = Pr[eλX > eλ∆] ≤ E[eλX]

eλ∆ (1.1)

Now, the problem of bounding this probability reduces to the
problem of bounding the average E[eλX], where X = X1 + · · ·+ Xn.
Now, the independence among the Xi’s is used to assert that

E[eλX] = E[eλ(X1+···+Xn)] = E[eλX1 . . . eλXn ] = E[eλX1] . . . E[eλXn ] (1.2)

, where the last equality is because of independence (this is the only
place where we use independence – will be used nowhere else). By
definition of expectation: E[eλX1] = peλ·1 + (1 − p)eλ·0 = peλ + q,
where we set q = 1 − p. Therefore, by (1.2) we have that E[eλX] =
(peλ + q)n.

We intentionally left up until now ∆ not set to a specific value be-
cause this is the first time that it matters what it is. Let us set ∆ to
(1 + ε)E[X] = np + εpn, i.e. ∆ = (p + t)n, which is a slightly more
convenient form for the calculation that follows. Then, by (1.1) we
have

Pr[X > (p + t)n] ≤ (peλ + q)n

eλ(p+t)n
=

(
peλ + q
eλ(p+t)

)n

The reason that we introduced a λ is the same reason that λ > 0 is
introduced in Laplace Transform (the serious reader should check the
literature about Laplace Transform and understand why the choice
of introducing a free parameter λ in the exponent is not “magic”).
Since the expression holds for all λ > 0 we apply the monotonic-
ity study (see Calculus 101) to find the λ that minimizes f (λ) =(

peλ+q
eλ(p+t)

)n
. By finding and substituting this λ back to (1.1) we have

that for t > 0

Pr[X > (p + t)n] ≤ e−n
(
(p+t) ln p+t

p +(q−t) ln q−t
q

)
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This probability bound is called Chernoff bound or Chernoff-
Hoeffding Bound. This form is the strongest (tightest) probability
bound we will derive. However, it is somewhat messy – not very
easy to use. By a simple (but not immediate) manipulation this ex-
pression easily yields the following theorem25.

Theorem 16. Let X1, . . . , Xn be i.i.d. Bernoulli trials with probability pa-
rameter p. Then,

Pr[X > (1 + ε)E[X]] ≤ e−
ε2
3 E[X] = e−

ε2
3 pn

and
Pr[X < (1 − ε)E[X]] ≤ e−

ε2
3 E[X] = e−

ε2
3 pn

Therefore, for a constant probability p and constant ε if we do the
experiment once (i.e. flip all n variables), then the probability that
the outcome is just a little bit away from E[X] is exponentially small,
i.e. 1

eΩ(n) . That is, with probability 1 − 1
eΩ(n) the value of X will be

inside [(1 − ε)E[X], (1 + ε)E[X]]. Compare this with the 1 − 1
Ω(n) rate

we derived before using Chebyshev’s inequality.

1.13 Statistical experiments over time: stochastic processes

Throughout this text, we keep repeating that every informal (but
reasonably) defined experiment immediately translates to a sample
space Ω. What happens if the experiment changes over time?

What is time? Time can be a continuous quantity, e.g. time t ∈ [0, ∞).
For every application of interest to Elements of Probability and
Statistics time progresses in discrete time steps, t ∈ {0, 1, 2, 3, . . . }. We
occasionally introduce time in the analysis of an experiment. In these

25This is just a derivation by: manipulating symbols, using a standard Taylor expansion, making substitutions. It is
simple to get and its proof does not provide any probabilistic insight.
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cases, there is no physical notion of time associated with our intro-
duced time steps. For example, when we consider n independent
X1, . . . , Xn there is no notion of time here. But in order to be able to
use the tools (developed in the next sections) we may artificially as-
sume that there is a time order for the Xi’s. A detailed example will
be given later on.

How to formalize time? One option is to consider different sample spaces,
e.g. Ω1, Ω2, . . . . Another option would be to consider product spaces
with possibly infinite coordinates. However, for (mathematically)
technical reasons it helps to have one space Ω over which we de-
fine random variables X1, X2, . . . , with Xi corresponding to the i-th
time-step. Such a sequence of Xi’s is called a stochastic process. Then,
the theory is developed by studying the relations between Xi’s. The
more interesting and useful findings are when the Xi’s are strongly
related – the more the restrictions the more meaningful the study.

Discrete memoryless processes An example of a severely restricted stochas-
tic process is one where the next step depends only on the previ-
ous step. Formally, for every i > 1 and α, β1, . . . , βi−1 ∈ X(Ω),
Pr[Xi = α|X1 = β1, . . . , Xi−1 = βi−1] = Pr[Xi = α|Xi−1 = βi−1].
This restriction is also great for visualizing such a memoryless pro-
cess. The fact that the i-th step depends only on the previous one
allows us to draw the stochastic process on papers: use one piece of
paper for each time step.

A further restriction is when the discrete memoryless process is
time-homogeneous, i.e. when the behavior of the process is the same
for every time step. Formally, Pr[Xi = α|Xi−1 = βi−1] = Pr[Xi−1 =
α|Xi−2 = βi−1], i.e. the distributions of the Xi’s do not depend on i.
They only depend on the value of the previous step (whichever this
is). Now, a single graph defines the process. Maybe we will need a
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paper of infinite size, but still just one paper.

Remark on terminology 17. Time-homogeneous, discrete memoryless
processes are usually called stationary Markov chains.

Such processes are common in supply chains, actuarial sciences,
process engineering, computer engineering, and computer science.

1.14 Martingales and Azuma’s inequality

A martingale is a concept different than a Markov process26. Markov
processes “are processes without memory”. Martingales are pro-
cesses that “maintain the expected value”.

A typical example of a martingale is a fair gambling game. To
understand this we need the notion of conditional expectation. Let X
be a random variable and E be an event.

E[X|E ] = ∑
α

α Pr[X = α|E ]

In this notation, E[X|Y] is a random variable because it depends on
Y (Y is not one event E – for different values β of Y we consider the
event E = “Y = β′′).

A stochastic process X1, X2, . . . is a martingale if for all i ≥ 2 holds:

E[Xi|X1, . . . , Xi−1] = Xi−1

We have a special interest in martingales that do not change too
rapidly. Specifically, we say that a martingale X1, X2, . . . satisfies the
bounded difference condition if for constants ci ≥ 0 and every i ≥ 2 we
have that

|Xi − Xi−1| ≤ ci

Theorem 18 (Azuma’s inequality). Let X1, X2, . . . be a martingale sat-
isfying the bounded difference condition with parameters ci. Fix n > 0 and

26There are examples of Markov processes that are not martingales, and of martingales that are not Markov processes.
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let c = ∑n
i=1 c2

i . Then,

Pr[Xn > X0 + t] ≤ e−
t2
2c

and also
Pr[Xn < X0 − t] ≤ e−

t2
2c

So, how to use the above in order to show measure concentration?

The serious reader should give serious thought to martingales.
Here we presented exactly what we will need for the rest of the class.
However, their importance is disproportional to the length of their
current presentation. After mastering all topics mentioned in this set
of notes you should study what is a filtration of a sample space, what
is a Doob’s filter, and other related topics.
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1.15 Suggested readings

Here is what I consider the best sources to study the subject.

Introduction to Probability, 2nd Edition
by Dimitris P. Bertsekas and John N. Tsitsiklis

An Introduction to Probability Theory and Its Applications, Vol.1, 3rd ed.
by William Feller

A more advanced text mostly on “continuous” spaces:

Probability, 2nd ed.
by Albert N. Shiryaev

A glimpse on the philosophical interpretation of probability:

Interpretations of Probability (Stanford Encyclopedia of Philosophy)
https://plato.stanford.edu/entries/probability-interpret/

by Alan Hajek

https://plato.stanford.edu/entries/probability-interpret/
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