

Reminders

- HW 6 and Extra Credit (HW 5 Question 3) due tonight
- Final Project Proposal Due Wednesday, Nov 19
- HW 7 due next week Monday (skip Question 4 about the survey)
- Lab 9 this week
 - Last lab assignment of the semester!!
 - Thanksgiving next week, then final project consultations the week after

Data Science in this course

- Exploration: Discover patterns in data and articulate insights (visualizations)
- Inference: Make reliable conclusions about the world
 - Statistics is useful
- Prediction: Informed guesses about unseen data

Last Class: Normal Distributions

Standard Deviation (SD)

Standard deviation measures the variability around the mean

$$\sigma = \sqrt{\operatorname{avg}\left((v - \mu)^2 \text{ for } v \in \overrightarrow{V}\right)}$$

- No matter the shape of the distribution, the bulk of the data is in the range "average plus or minus a few standard deviations"

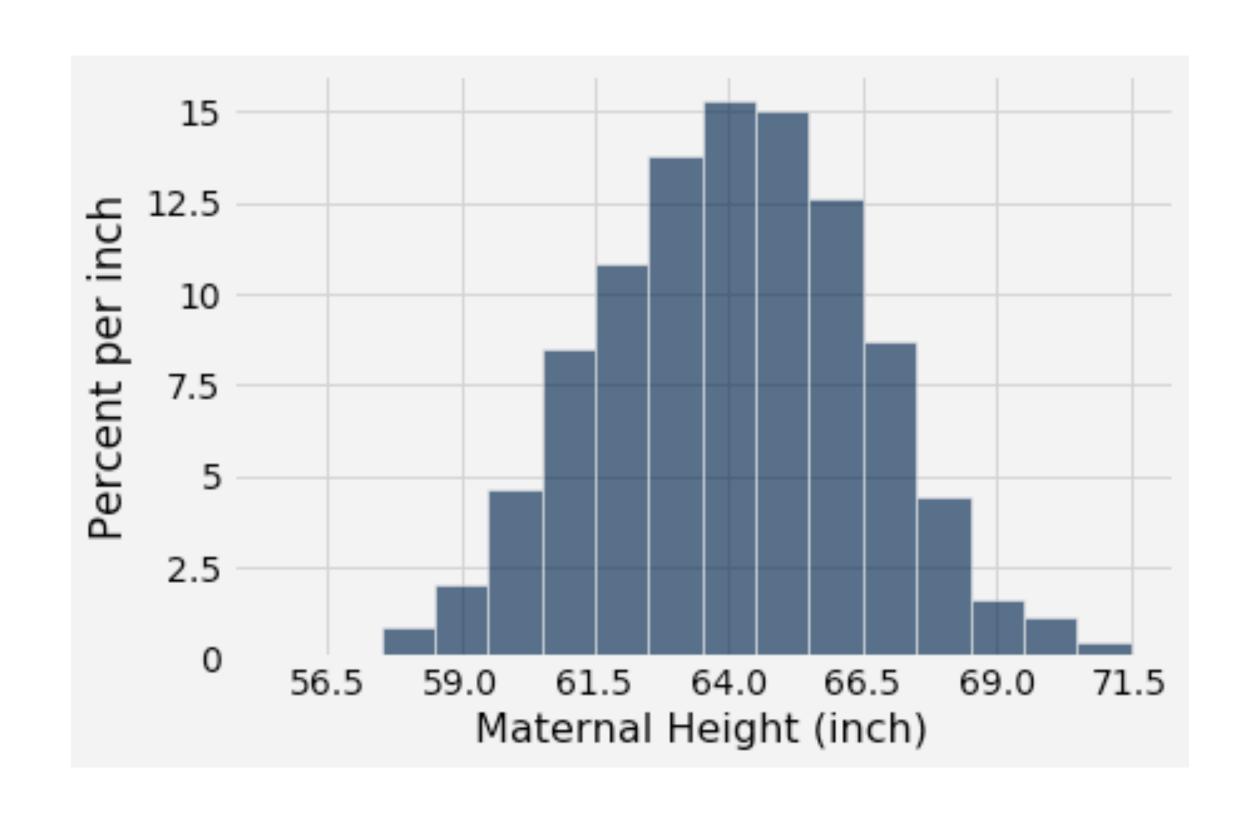
Standard Units

- The quantity z (from "average $\pm z$ SDs" in Chebychev's inequality) measures **standard units**
 - Standard units is the number of standard deviations away from the average
- To convert a value (v) to standard units, compare the deviation from the average (μ) with the standard deviation (SD):

$$z = \frac{v - \mu}{SD}$$

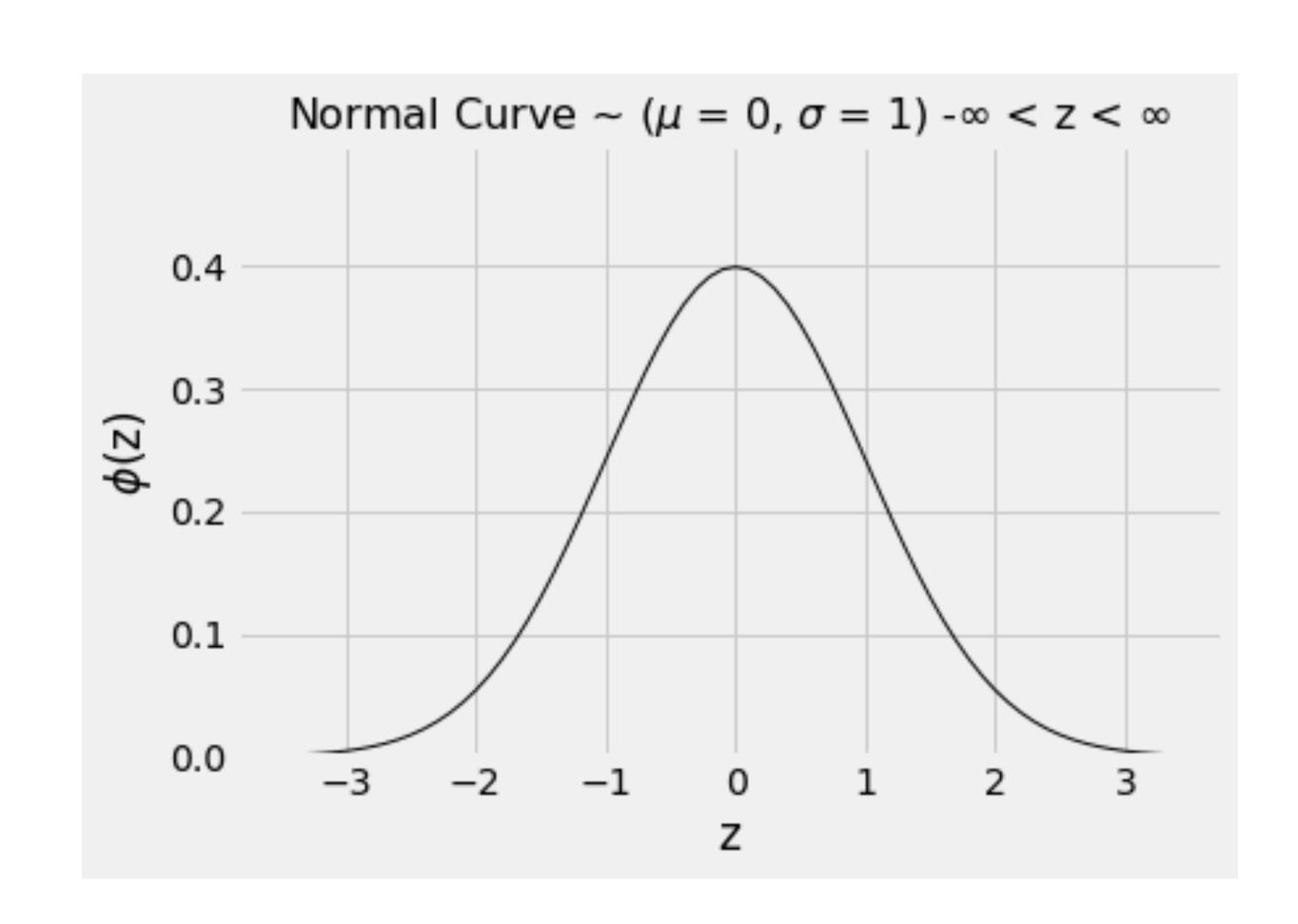
Bell Shaped Curves

- The normal curve / bell-curve is a very common distribution
- For bell-shaped (aka Gaussian distribution):
 - Average is at the center
 - SD is the distance between the average and the points of inflection on either side



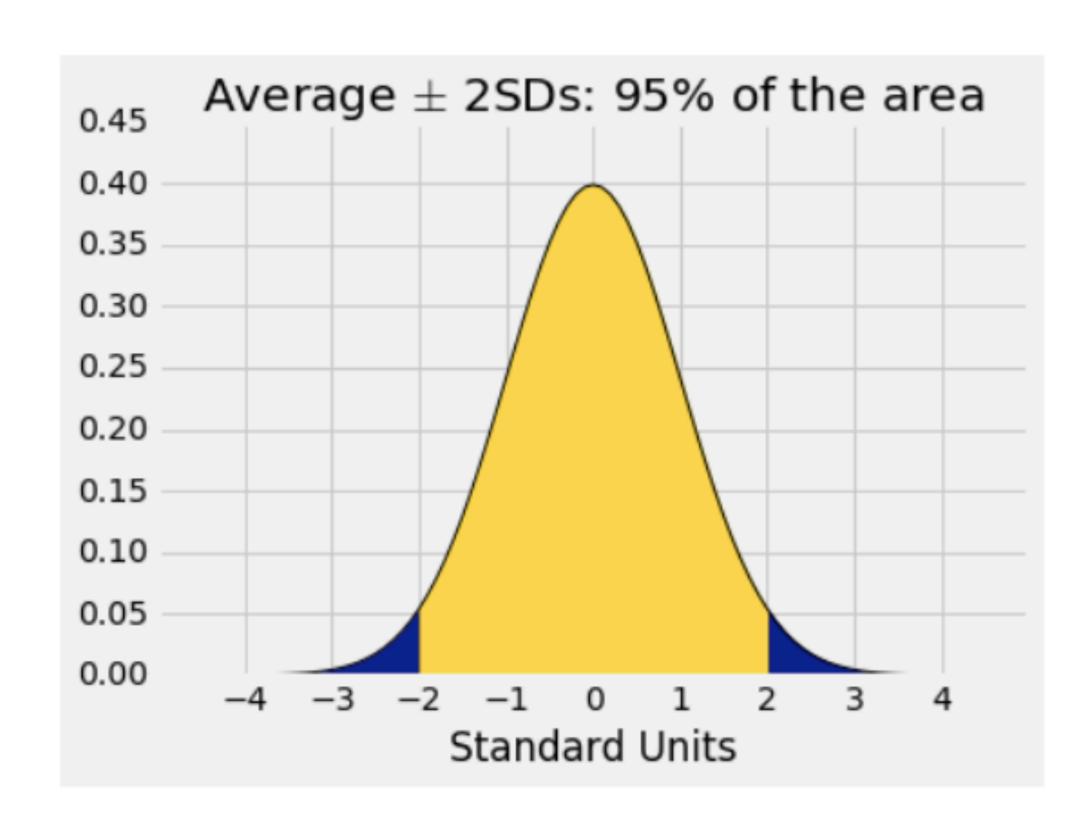
Normal Distribution

- On a standard normal curve, x-axis units are standard units
- Total area of the curve is 1
- Curve is symmetric around 0 (mean and median are both 0)
- Points of inflection are -1 and 1
 - Standard deviation is 1



Application to Normal Distributions

- If a histogram is bell-shaped (normal), then 95% of the data is in the range average + 2 SDs
- Note this is much higher than Chebychev's bound of 75%
 - 75% is a lower bound that applies to all distributions



Normal vs All Distributions

Range	All Distributions (Chebyshev's)	Normal Distribution				
mean <u>+</u> 1 SDs	At least 0%	At least 68%				
mean <u>+</u> 2 SDs	At least 75%	At least 95%				
mean <u>+</u> 3 SDs	At least 89%	At least 99%				

- Describes how a normal distribution is connected to random sample averages (which helps us determine the population average)
- Central Limit Theorem: If a sample is large and drawn at random with replacement, then regardless of the distribution the probability distribution of the sample average is roughly normal

- Describes how a normal distribution is connected to random sample averages (the average of a sample we collect)
- We calculate sample averages because they can help us estimate population averages

Definition:

Is a sample is large and drawn at random with replacement

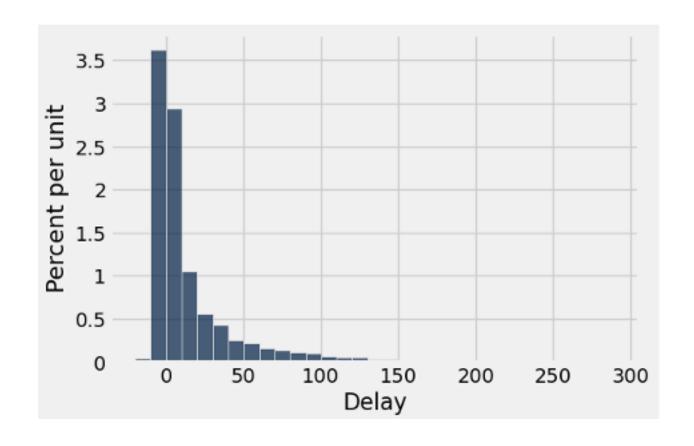
Then regardless of the distribution,

The probability distribution of the sample average is roughly normal

Distribution of Sample Averages

- If you have one random sample, you can take the average of values in that sample (one sample average)
- But that sample average could be different if you took different sample
- Distribution of sample averages is the distribution of possible sample averages if you were to draw different samples

Population



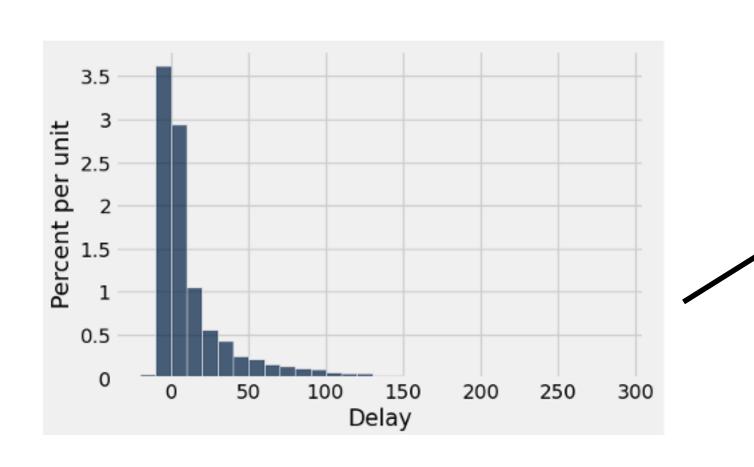
Population mean = 16.65

SD = 39.5

Sample

Size = 100

Population



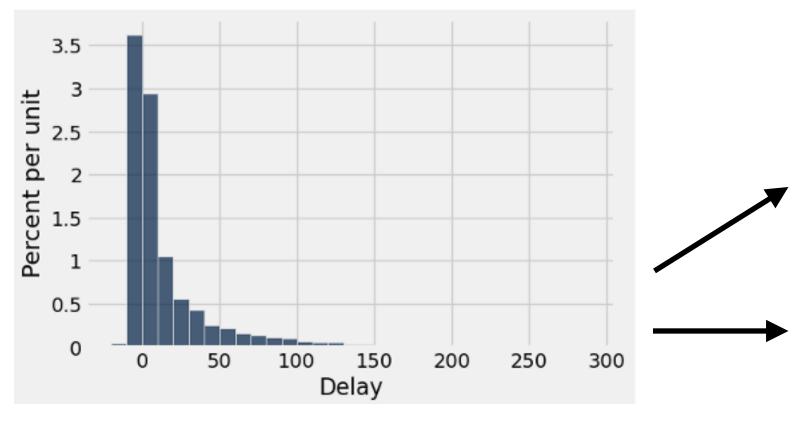
Population mean = 16.65

SD = 39.5

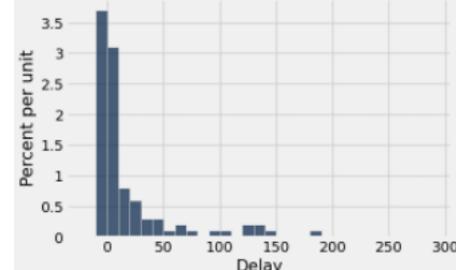
Sample

Size = 100

Population



3.5
3.5
2.5
2.5
1.5
0.5
0 50 100 150 200 250 300 Delay



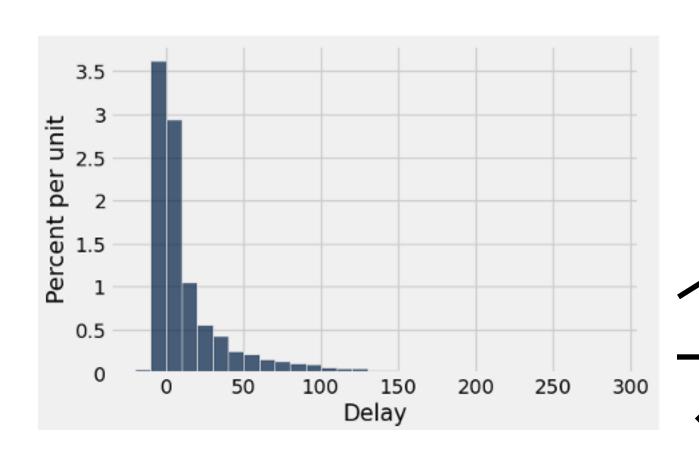
Population mean = 16.65

$$SD = 39.5$$

Sample

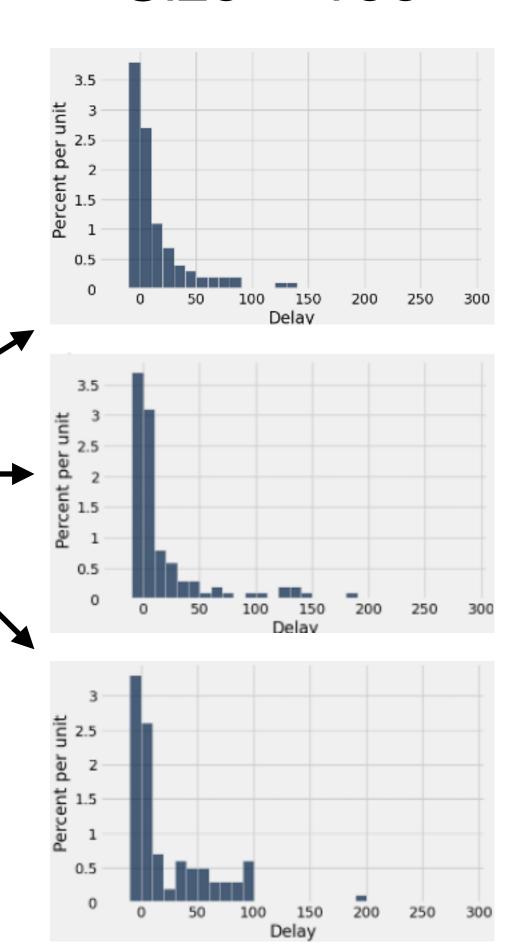
Size = 100

Population

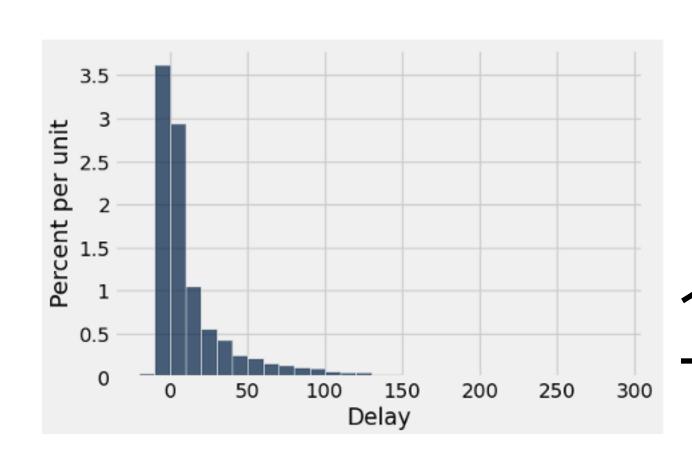


Population mean = 16.65

$$SD = 39.5$$



Population

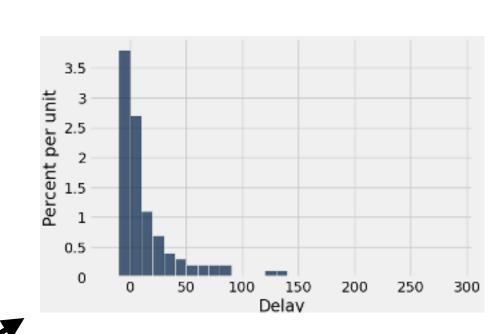


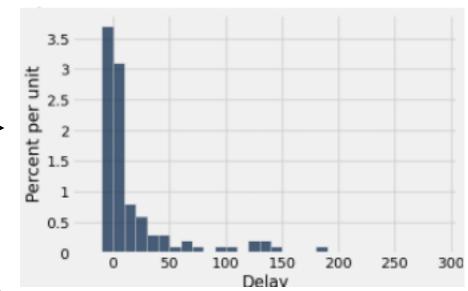
Population mean = 16.65

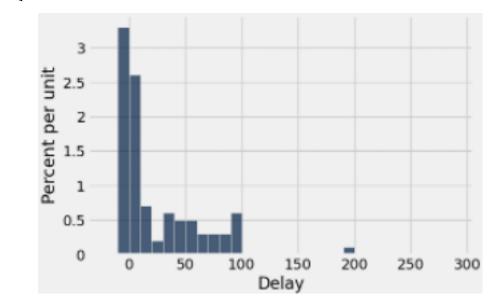
$$SD = 39.5$$

Sample

Size = 100







Statistic

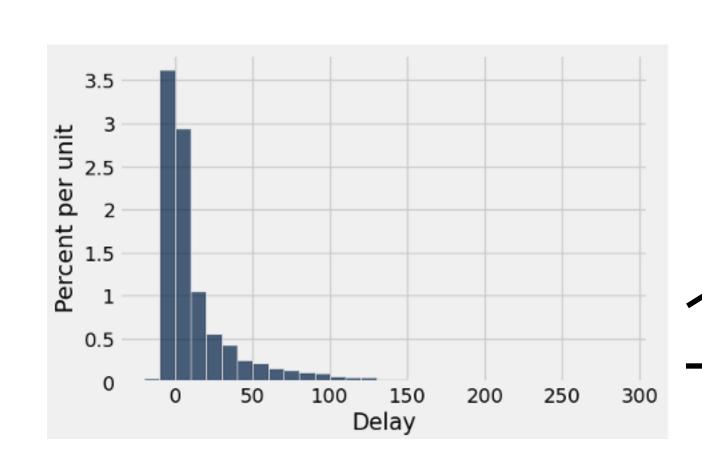
Sample mean

$$\mu_1 = 13.1$$

$$\mu_2 = 17.55$$

$$\mu_n = 21.95$$

Population

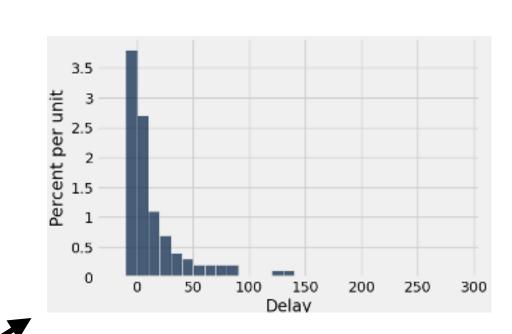


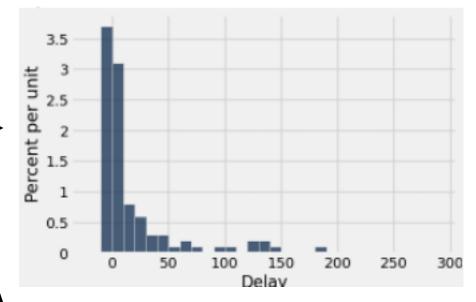
Population mean = 16.65

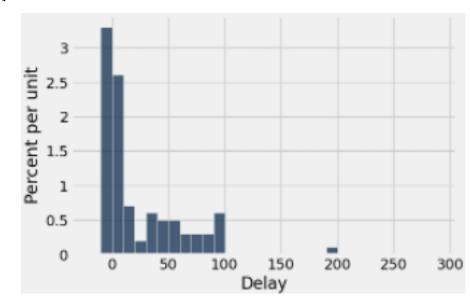
$$SD = 39.5$$

Sample

Size = 100







Statistic

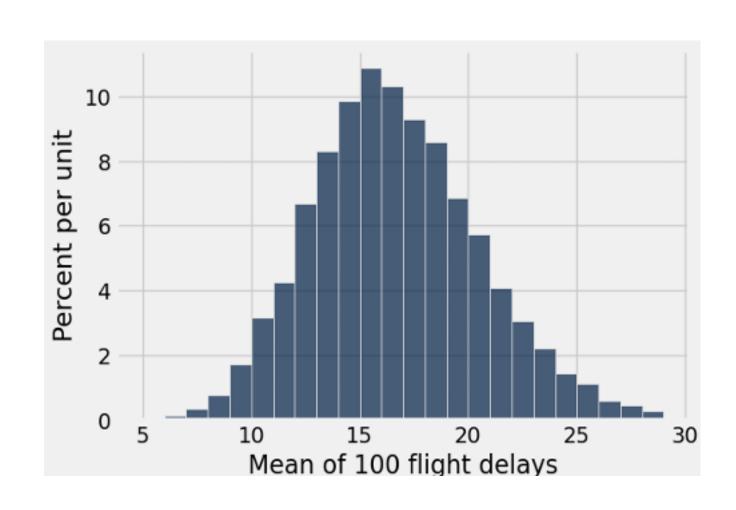
Sample mean

$$\mu_1 = 13.1$$

$$\mu_2 = 17.55$$

$$\mu_n = 21.95$$

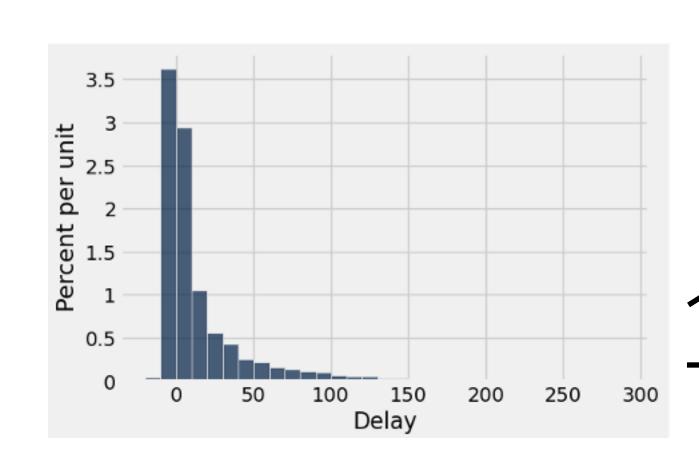
Distribution of sample means



Sample average mean = 16.63

$$SD = 3.9$$

Population

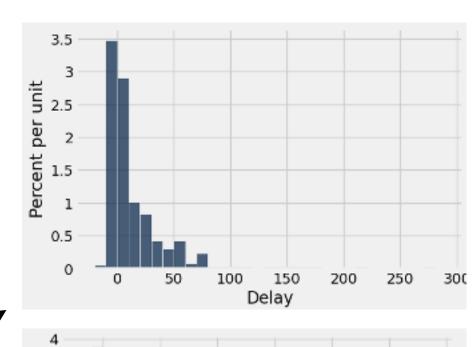


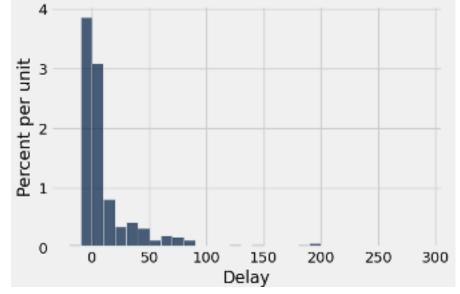
Population mean = 16.65

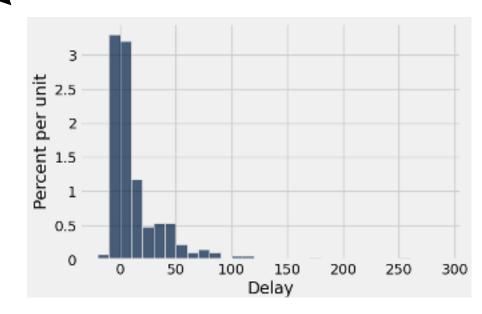
$$SD = 39.5$$

Sample

Size = 400







Statistic

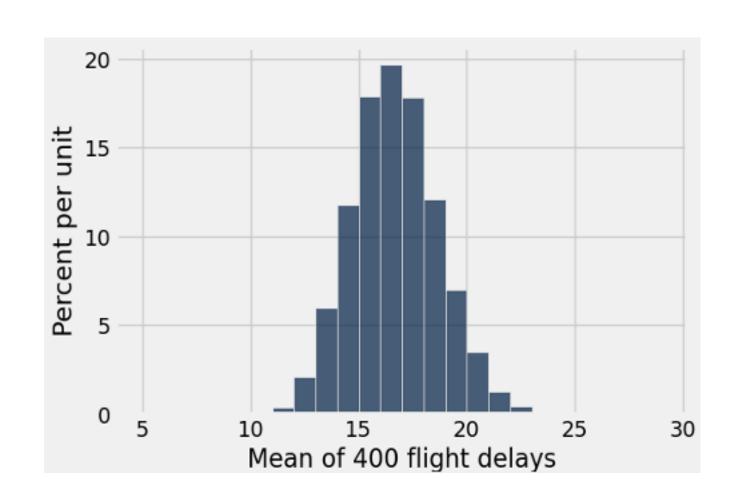
Sample mean

$$\mu_1 = 15.33$$

$$\mu_2 = 16.2$$

$$\mu_n = 18.95$$

Distribution of sample means



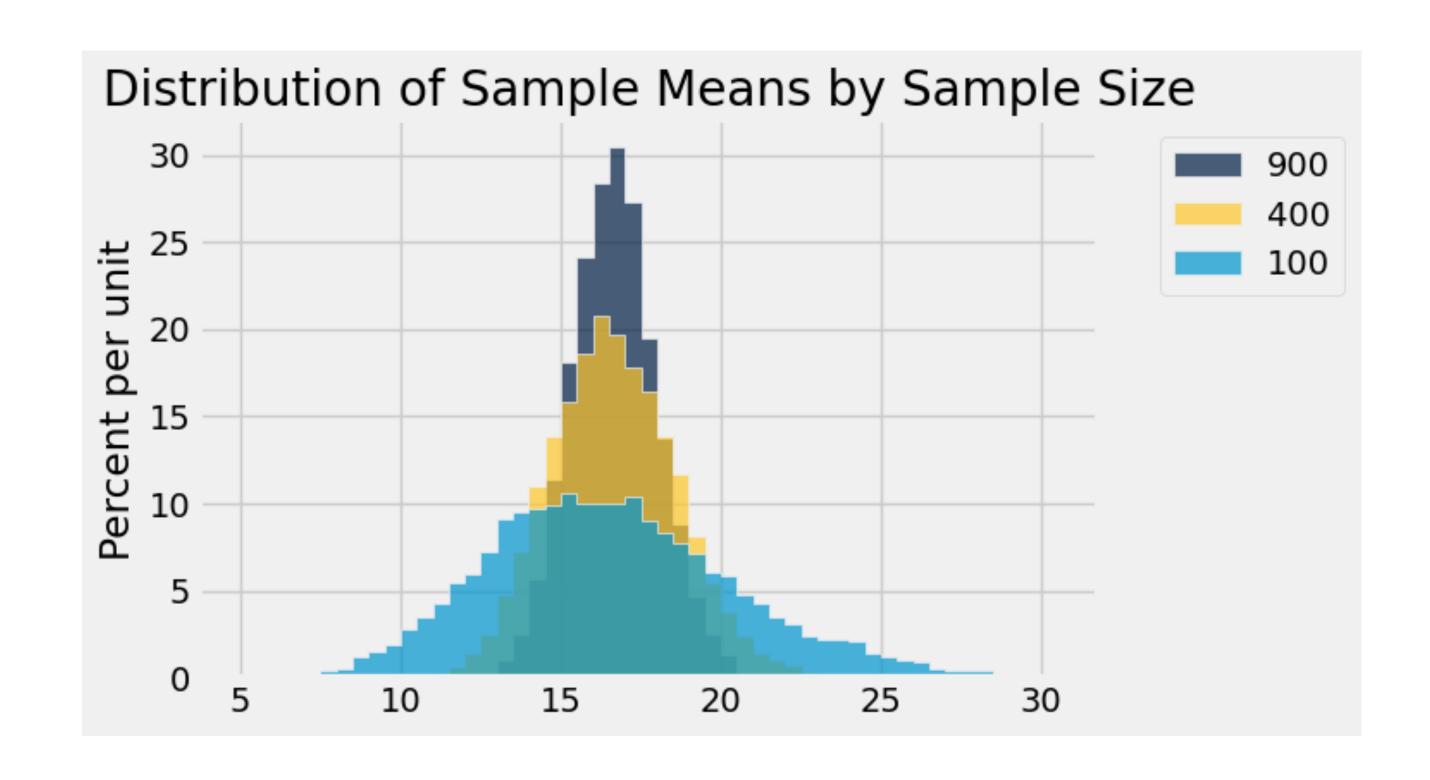
Sample average mean = 16.67

$$SD = 1.98$$

Distribution of Sample Means & Sample Size

When increasing sample size,

- Distributions get narrower (closer to the true mean)
- Also get taller (higher probability around true mean)



Central Limit Theorem for Sample Mean

Definition:

If you draw a large random sample with replacement from a population, then, regardless of the distribution of the population,

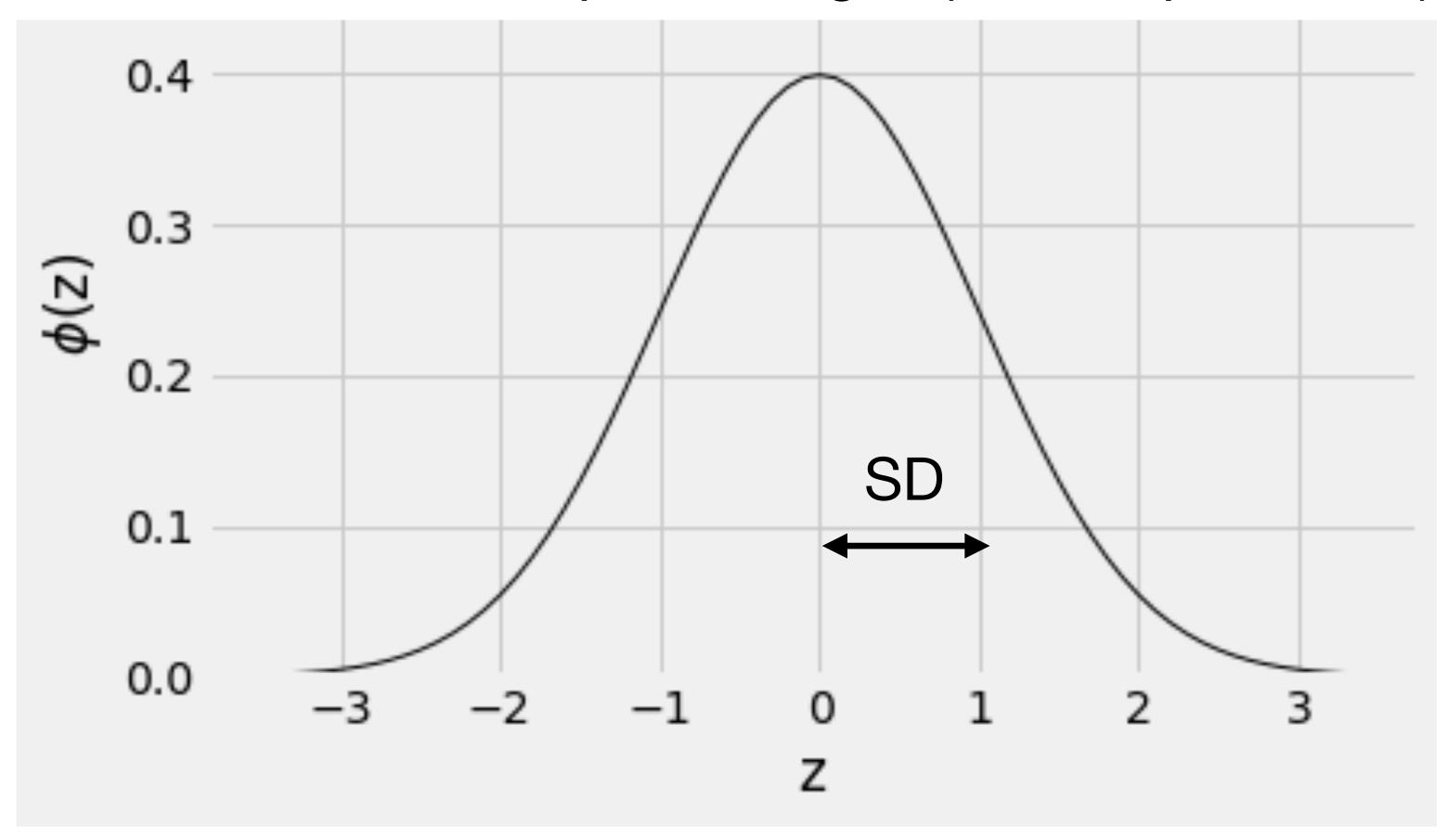
the probability distribution of the sample mean is roughly normal,

centered at the population mean (mean = population mean), with

SD of all possible sample means =
$$\frac{\text{Population SD}}{\sqrt{\text{sample size}}}$$

Connecting to confidence intervals

Distribution of Sample Averages (for Sample Size n)



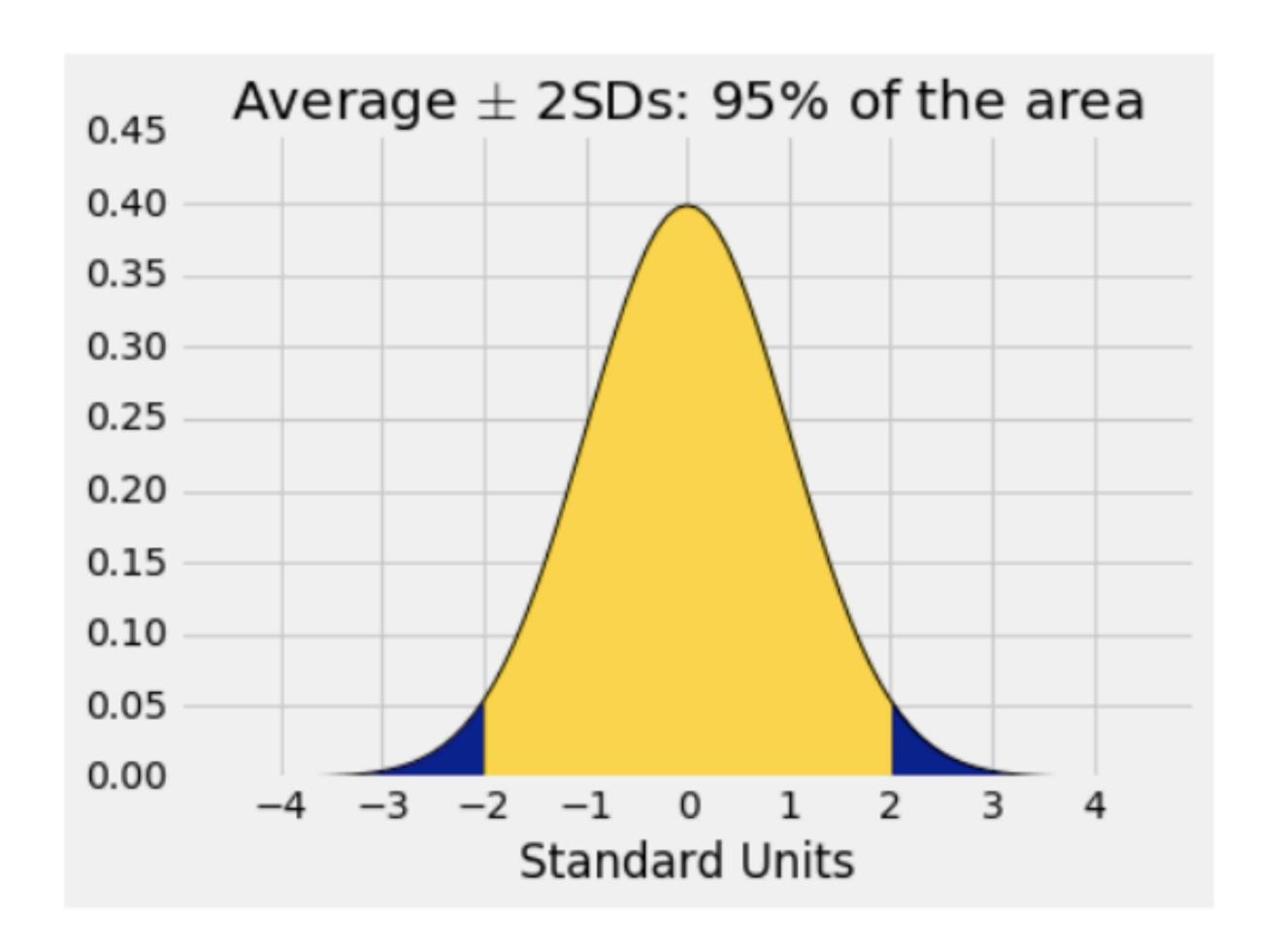
$$SD = \frac{\text{Population SD}}{\sqrt{\text{sample size}}}$$

Normal vs All Distributions (Chebyshev's)

Range	All Distributions (Chebyshev's)	Normal Distribution				
mean <u>+</u> 1 SDs	At least 0%	At least 68%				
mean <u>+</u> 2 SDs	At least 75%	At least 95%				
mean <u>+</u> 3 SDs	At least 89%	At least 99%				

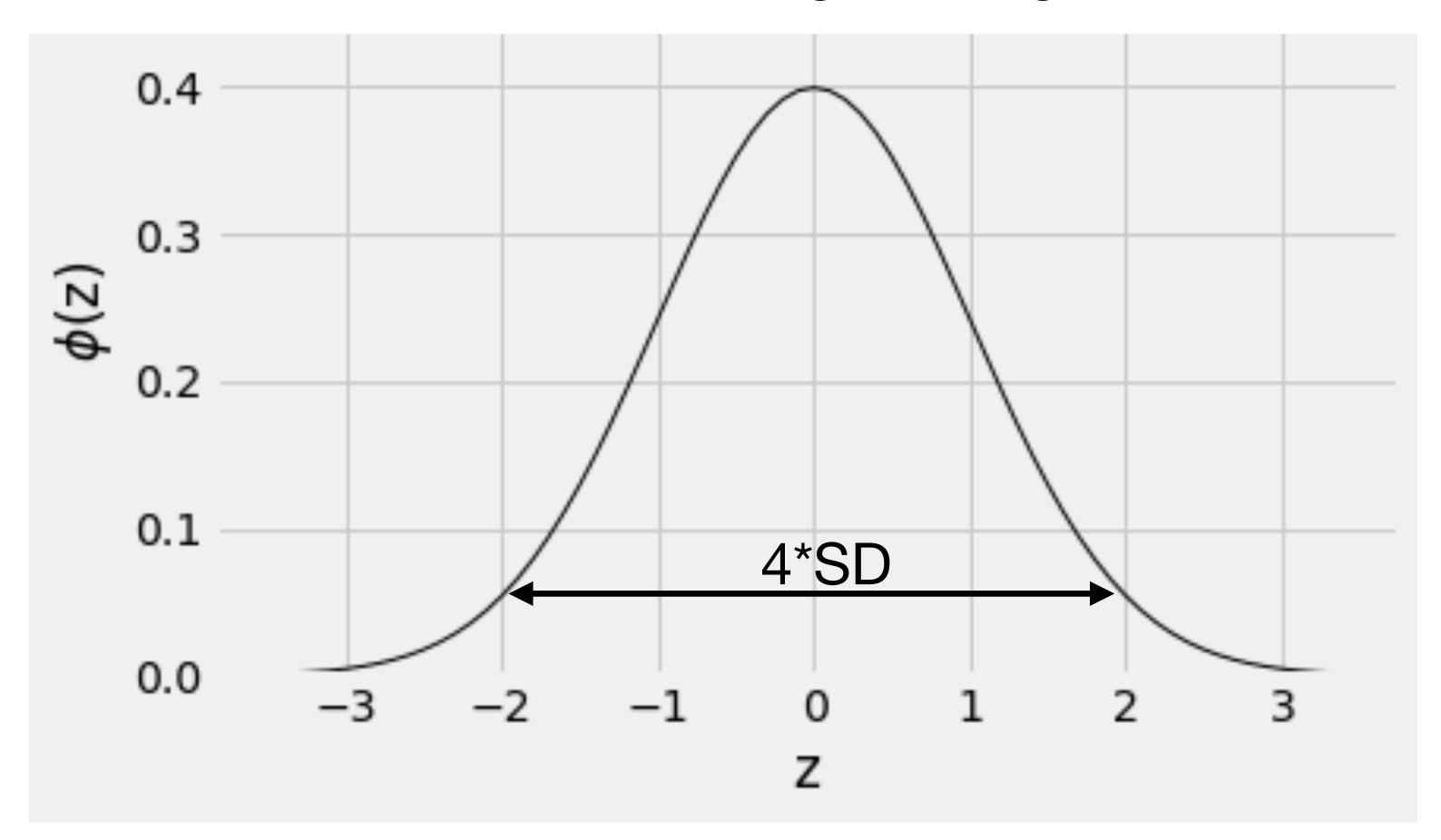
95% Confidence in Normal Distributions

- For a normal distribution, 95% of the data is in the range average + 2SDs



Connecting to confidence intervals

95% of the data is in the range average + 2SDs



width of the 95% confidence interval =

$$4*\frac{\text{Population SD}}{\sqrt{\text{sample size}}}$$

Controlling the width

Total width of the 95% confidence interval

$$= 4 * \frac{\text{Population SD}}{\sqrt{\text{sample size}}}$$

- The more narrow the interval, the more precise your estimate

Suppose you want to bound the total width of an interval (say, at most 1%)

- How should you choose the sample size?

How large of a sample do we need?

- Recall for normal distributions: Width of 95% confidence interval = 4*SD
- Central Limit Theorem:

$$SD = \frac{\text{Population SD}}{\sqrt{\text{sample size}}}$$

- Putting it together:

$$0.01 \ge 4 * \frac{\text{Population SD}}{\sqrt{\text{sample size}}}$$

How large of a sample do we need?

- Recall for normal distributions: Width of 95% confidence interval = 4*SD
- Central Limit Theorem:

$$SD = \frac{\text{Population SD}}{\sqrt{\text{sample size}}}$$

- Putting it together:

$$0.01 \geq 4*\frac{\text{Population SD}}{\sqrt{\text{sample size}}}$$

$$\sqrt{\text{sample size}} \geq 4*\frac{\text{Population SD}}{0.01}$$

How large of a sample do we need?

- Recall for normal distributions: Width of 95% confidence interval = 4*SD
- Central Limit Theorem:

$$SD = \frac{\text{Population SD}}{\sqrt{\text{sample size}}}$$

- Putting it together:

$$0.01 \ge 4* \frac{\text{Population SD}}{\sqrt{\text{sample size}}}$$

$$\sqrt{\text{sample size}} \ge 4* \frac{\text{Population SD}}{0.01}$$

Sample Proportions

- There's interesting data which is just 0 or 1
- Examples:
 - Polling for Candidate A vs Candidate B
 - Cancerous cells vs no cancerous cells
 - Disease vs no disease

Sample Proportions

Suppose we polled 10 voters on if they voted for Candidate A (0) or Candidate B (1)

Voter	1	2	3	4	5	6	7	8	9	10
	0	0	0	0	0	0	0	0	0	1

- What is the proportion who voted for B?

$$\frac{1}{10} = 0.1$$

Sample Proportions

Suppose we polled 10 voters on if they voted for Candidate A (0) or Candidate B (1)

Voter	1	2	3	4	5	6	7	8	9	10
	0	0	0	0	0	0	0	0	0	1

- What is the proportion who voted for B? 1/10 = 0.1

Voter	1	2	3	4	5	6	7	8	9	10
	0	0	0	0	0	1	0	0	0	1

- What is the proportion who voted for B? 2/10 = 0.2

Proportions are Averages

If the population consists of 1s and 0s (or yes/no), then the population average is the proportion of 1s in the population

- Likewise the sample average is the proportion of 1s in the sample

Voter	1	2	3	4	5	6	7	8	9	10
	0	0	0	0	0	1	0	0	0	1

Number of 1s	Proportion of 1s	SDs

$$\sigma = \sqrt{\operatorname{avg}\left((\nu - \mu)^2 \text{ for } \nu \in \overrightarrow{V}\right)}$$

Number of 1s	Proportion of 1s	SDs
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

$$\sigma = \sqrt{\operatorname{avg}\left((\nu - \mu)^2 \text{ for } \nu \in \overrightarrow{V}\right)}$$

Number of 1s	Proportion of 1s	SDs
0	0	
1	0.1	
2	0.2	
3	0.3	
4	0.4	
5	0.5	
6	0.6	
7	0.7	
8	0.8	
9	0.9	
10	1	

$$\sigma = \sqrt{\operatorname{avg}\left((v - \mu)^2 \text{ for } v \in \overrightarrow{V}\right)}$$

Number of 1s	Proportion of 1s	SDs
0	0	0
1	0.1	
2	0.2	
3	0.3	
4	0.4	
5	0.5	
6	0.6	
7	0.7	
8	0.8	
9	0.9	
10	1	

$$\sigma = \sqrt{\operatorname{avg}\left((\nu - \mu)^2 \text{ for } \nu \in \overrightarrow{V}\right)}$$

Number of 1s	Proportion of 1s	SDs
0	0	0
1	0.1	
2	0.2	
3	0.3	
4	0.4	
5	0.5	
6	0.6	
7	0.7	
8	0.8	
9	0.9	
10	1	

$$\sigma = \sqrt{\operatorname{avg}\left((v - \mu)^2 \text{ for } v \in \overrightarrow{V}\right)}$$

$$\sigma = \sqrt{\frac{(1 - 0.1)^2 + 9 * (0. - 0.1)^2}{10}}$$

Number of 1s	Proportion of 1s	SDs
0	0	0
1	0.1	
2	0.2	
3	0.3	
4	0.4	
5	0.5	
6	0.6	
7	0.7	
8	0.8	
9	0.9	
10	1	

$$\sigma = \sqrt{\operatorname{avg}\left((\nu - \mu)^2 \text{ for } \nu \in \overrightarrow{V}\right)}$$

$$\sigma = \sqrt{\frac{(1 - 0.1)^2 + 9 * (0. - 0.1)^2}{10}}$$
$$= \sqrt{\frac{0.81 + 9 * 0.01}{10}}$$

Number of 1s	Proportion of 1s	SDs
0	0	0
1	0.1	
2	0.2	
3	0.3	
4	0.4	
5	0.5	
6	0.6	
7	0.7	
8	0.8	
9	0.9	
10	1	

$$\sigma = \sqrt{\operatorname{avg}\left((\nu - \mu)^2 \text{ for } \nu \in \overrightarrow{V}\right)}$$

$$\sigma = \sqrt{\frac{(1 - 0.1)^2 + 9 * (0. - 0.1)^2}{10}}$$

$$= \sqrt{\frac{0.81 + 9 * 0.01}{10}}$$

$$= \sqrt{\frac{0.9}{10}}$$

Number of 1s	Proportion of 1s	SDs
0	0	0
1	0.1	0.3
2	0.2	
3	0.3	
4	0.4	
5	0.5	
6	0.6	
7	0.7	
8	0.8	
9	0.9	
10	1	

$$\sigma = \sqrt{\operatorname{avg}\left((\nu - \mu)^2 \text{ for } \nu \in \overrightarrow{V}\right)}$$

$$\sigma = \sqrt{\frac{(1 - 0.1)^2 + 9 * (0. - 0.1)^2}{10}}$$

$$= \sqrt{\frac{0.81 + 9 * 0.01}{10}}$$

$$= \sqrt{\frac{0.9}{10}}$$

$$= 0.3$$

Number of 1s	Proportion of 1s	SDs
0	0	0
1	0.1	0.3
2	0.2	0.4
3	0.3	
4	0.4	
5	0.5	
6	0.6	
7	0.7	
8	0.8	
9	0.9	
10	1	

$$\sigma = \sqrt{\operatorname{avg}\left((\nu - \mu)^2 \text{ for } \nu \in \overrightarrow{V}\right)}$$

$$\sigma = \sqrt{\frac{2*(1-0.2)^2 + 8*(0.-0.2)^2}{10}}$$

$$= \sqrt{\frac{2*0.64 + 8*0.04}{10}}$$

$$= \sqrt{\frac{1.6}{10}}$$

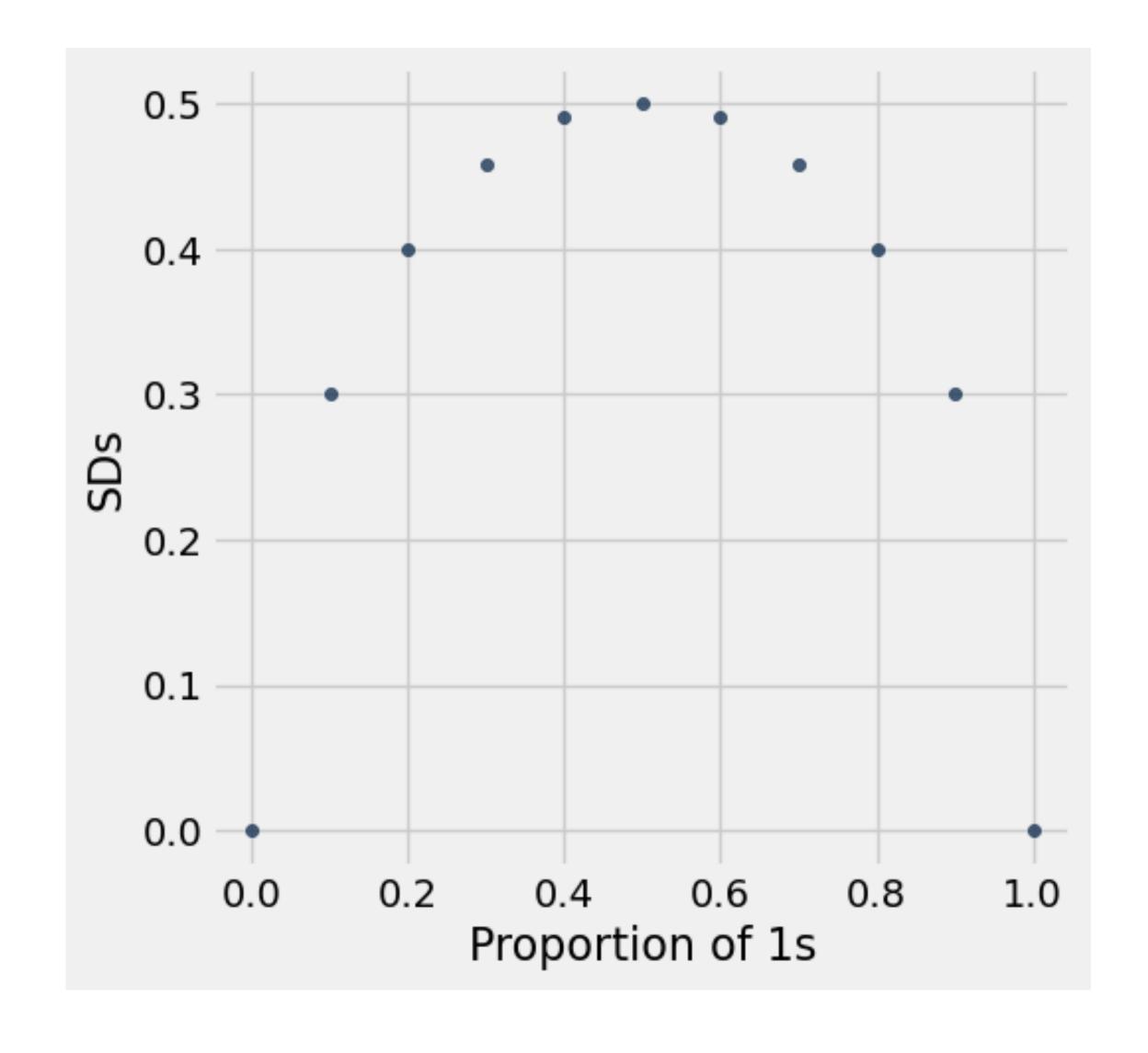
$$= 0.4$$

Number of 1s	Proportion of 1s	SDs
0	0	0
1	0.1	0.3
2	0.2	0.4
3	0.3	0.458258
4	0.4	0.489898
5	0.5	0.5
6	0.6	0.489898
7	0.7	0.458258
8	0.8	0.4
9	0.9	0.3
10	1	0

$$\sigma = \sqrt{\operatorname{avg}\left((\nu - \mu)^2 \text{ for } \nu \in \overrightarrow{V}\right)}$$

Population SD for Situations with 2 Outcomes

- For situations with only 2 outcomes, the SD ranges from 0 to 0.5, with a max value of 0.5
- Thus, to estimate worst case scenario (most conservative sample size needed), you can use the maximum SD=0.5



- Two candidates are up for election: Candidate A and Candidate B
- Candidate A wants to estimate with a 95% confidence interval what % of voters will vote for her
- How large of a sample should the candidate poll if they want to make this estimate with a desired accuracy of no wider than 1%?
 - Example: 95% confidence interval of (44%, 44.5%) is ok, but (44%, 46%) would be too inaccurate

$$\sqrt{\text{sample size}} \ge 4 * \frac{\text{Population SD}}{0.01}$$

$$\sqrt{\text{sample size}} \ge 4 * \frac{\text{Population SD}}{0.01}$$

$$\sqrt{\text{sample size}} \ge 4 * \frac{0.5}{0.01}$$

$$\sqrt{\text{sample size}} \ge 4*\frac{\text{Population SD}}{0.01}$$
 $\sqrt{\text{sample size}} \ge 4*\frac{0.5}{0.01}$
 $\sqrt{\text{sample size}} \ge 4*50$

$$\sqrt{\text{sample size}}$$
 ≥ 4* $\frac{\text{Population SD}}{0.01}$
 $\sqrt{\text{sample size}}$ ≥ 4* $\frac{0.5}{0.01}$
 $\sqrt{\text{sample size}}$ ≥ 4* 50

sample size ≥ 200²

$$\sqrt{\text{sample size}} \ge 4 * \frac{\text{Population SD}}{0.01}$$
 $\sqrt{\text{sample size}} \ge 4 * \frac{0.5}{0.01}$
 $\sqrt{\text{sample size}} \ge 4 * 50$

sample size $\ge 200^2$

sample size $\ge 40,000$

Next time

- Prediction
 - Correlation
 - Linear regression