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Reminders

Final Project Proposal Due Friday

- Worth 10% of the final project grade

- Template is on the 1017 Courseworks

HW 6 due next week Monday, Nov 17

HW 7: Skip Question 4 about the survey

Extra Credit (HW 5 Question 3) Due Monday, Nov 17

- Completely optional, no late submissions



Final Project Groups

_ Please CheCk the InfO On the — COMSBC1017_001_2025_3 - Introduction to Computational Thinking a > People > Groups
1017 Courseworks is right N
» Section 1 - Anna Pan and Anna Freitag 2 students

- If your final project group can
attend One Of the ThurSday |abS, » Section 1 - Audrey Riskey, Isabella Diaz, and Caitlyn O'Shea 3 students
consider switching

» Section 1 - Caroline Villamin and Jinghan Wang 2 students

_ G rO u pS are Ove rWh el m i n g » Section 1 - Celia Costa and Bea Creighton 2 student

atten d I n g Wed n eSd ay IabS » Section 1 - Jahnavi Bolleddula and Camila Pierre 2 students
Dec 3/4

» Section 1 - Jenna Silvera and Diego Putinati 2 students

- E m ai I m e if yO u Want tO SWitC h » Section 1 - Juliana Chavis and Maheen Asaf 2 students

» Section 1 - Jullye Campos and Regina Rodriguez 2 students



Lecture Outline

- AB Testing Review
- Confidence intervals
- Percentiles
- Estimations
- Bootstrapping

- Summary



Review: A/B Testing



Review: P-Value

P-value: Observed significance level o |
Prediction Under the Null Hypothesis

The P-value is the chance '

under the null hypothesis

that the test statistic

isbequal (’;o ﬂlﬁ vaélute that was - I I
observed in the data 4 __._2 O 2.__

0
or Is even further in the direction of Difference Between Group Means
the alternative

= NN W W
orn © Ui O WU!m

Percent per unit
—
o



A/B Testing

- Testing whether Group A and Group B have the same underlying
distribution or not

- Null Hypothesis: The distributions of [test statistic] from both groups are
the same

- Any differences we observe are due to chance

- Alternative Hypothesis: The distributions are different

- If the distributions look different, it supports the alternative hypothesis



A/B Testing Process

- Under the null, if the Group A and Group B are the same, it doesn’t matter
what label (A or B) we assign each item

- We expect the difference between the groups to be O
- Permutation Test;

- Shuffle all group labels using shuttle (with replacement = False)

- Compute the difference between the average of the two shuffled groups

- Compare the difference to our observed difference



1.

A/B Testing Process

Write a function that
calculates the test static
for one simulation

Repeat that process in a
for loop many times

Plot the distribution and
compare to our observed
value

def one_simulated_difference(table, label, group_label):

""" Takes: name of table, column label of numerical variable,
column label of group-label variable
Returns: Difference of means of the two groups after shuffling labels"""

# array of shuffled labels
shuffled_labels = table.sample(with_replacement = False).column(group_label)

# table of numerical variable and shuffled labels
shuffled _table = table.with _column('Shuffled Label', shuffled_labels)

return difference_of_means(shuffled_table, label, 'Shuffled Label')

differences = make_array()

for i in np.arange(2500):
new_difference = one_simulated_difference(births, 'Birth Weight', 'Maternal Smoker')
differences = np.append(differences, new_difference)

diff_tbl = Table().with_column('Difference Between Group Means', differences)
diff_tbl.hist()



Confidence Intervals

Textbook Chapter on Confidence Intervals
Textbook Chapter on Using Confidence Intervals



https://inferentialthinking.com/chapters/13/3/Confidence_Intervals.html
https://inferentialthinking.com/chapters/13/4/Using_Confidence_Intervals.html

Confidence Interval

- Interval of estimates of a parameter

- Statistic tells us the estimate of a single parameter, confidence interval
tells us a range of values of the estimated parameter

- “How often does our estimate capture the parameter”

- Based on the notion of percents, so helpful to understand what we mean
by a percentile



Percentile

- The p-th percentile of a collection is the smallest value in the collection that is at least
as large as p% of all the values

- Computing the p-th percentile of a list of n values:

1. Sort the list

2. Compute how many elements k the p% refers to

k = P X n
2551

3. Return the k-th smallest element (counting from 1)




Percentile

Example: What is the 80th percentile for [12, 17, 6, 9, 7]?

1. Sort the list

2. Compute how many elements k the p% refers to

3. Return the k-th smallest element (counting from 1)



Percentile

Example: What is the 80th percentile for [12, 17, 6, 9, 7]?

1. Sort the list: [6, 7, 9, 12, 17]

2. Compute how many elements k the p% refers to

3. Return the k-th smallest element (counting from 1)



Percentile

Example: What is the 80th percentile for [12, 17, 6, 9, 7]?

1. Sort the list: [6, 7, 9, 12, 17]

2. Compute how many elements k the p% refers to

p 30 4
k=|—Xn|=|—X5|=|=X35| =4
100 100 5

3. Return the k-th smallest element (counting from 1)



Percentile

Example: What is the 80th percentile for [12, 17, 6, 9, 7]?

1. Sort the list: [6, 7, 9, 12, 17]

2. Compute how many elements k the p% refers to

p 30 4
k=|—Xn|=|—X5|=|=X35| =4
100 100 5

3. Return the k-th smallest element (counting from 1)

4th smallest element of [6, 7, 9, 12, 17] is 12



percentile Function

- percentile(p, values array)

- Returns the smallest value in values array thatis at least as large as
p% of the elements in the array

- p Is always between 0 and 100



percentile (p,array)
Exam ple returns the smallest value In

array that is at least as large
as p% of elements in the array

lets = [1, 3, 5, 7, 9]

What would percentile (20, s) evaluate to?



percentile (p,array)
Exam ple returns the smallest value In

array that is at least as large
as p% of elements in the array

lets = [1, 3, 5, 7, 9]
What would percentile (20, s) evaluate to?

1. Sort the list

2. Compute how many elements k the p% refers to

k = L><n
2551

3. Return the k-th smallest element (counting from 1)



percentile (p,array)
Exam ple returns the smallest value In

array that is at least as large
as p% of elements in the array

lets = [1, 3, 5, 7, 9]
What would percentile (20, s) evaluate to?

1. Sort the list

2. Compute how many elements k the p% refers to

20
100 100

3. Return the k-th smallest element (counting from 1)



percentile (p,array)
M O re Exam p I eS returns the smallest value In

array that is at least as large
as p% of elements in the array

lets = [1, 3, 5, 7, 9]
Which of the following evaluate to True?
1. percentile (10, s) ==

2. percentile (39, s) == percentile (40, s)

3. percentile (40, s) == percentile (41, s)



percentile (p,array)
M O re Exam p I eS returns the smallest value In

array that is at least as large
as p% of elements in the array

lets = [1, 3, 5, 7, 9]
Which of the following evaluate to True?
1. percentile (10, s) ==
False! Element is an element from the array

2. percentile (39, s) == percentile (40, s)

3. percentile (40, s) == percentile (41, s)



percentile (p,array)
M O re Exam p I eS returns the smallest value In

array that is at least as large
as p% of elements in the array

lets = [1, 3, 5, 7, 9]
Which of the following evaluate to True?
1. percentile (10, s) ==
False! Element is an element from the array
2. percentile (39, s) == percentile (40, s)

True! Both evaluate to 3

3. percentile (40, s) == percentile (41, s)



percentile (p,array)
M O re Exam p I eS returns the smallest value In

array that is at least as large
as p% of elements in the array

lets = [1, 3, 5, 7, 9]
Which of the following evaluate to True?
1. percentile (10, s) ==
False! Element is an element from the array
2. percentile (39, s) == percentile (40, s)
True! Both evaluate to 3
3. percentile (40, s) == percentile (41, s)

False. First value is 3 but the second one is 5



Estimation



Estimation

- We use estimation to figure out the value of an unknown
parameter

If entire population is known If we only have access to
a random sample

Calculate parameter directly We calculate a statistic as an
estimate of the parameter




Notebook Demo: SF Gov't
Salaries




Quantifying Uncertainty

- Our estimate depends on the sample we collected. How different would
the estimate be if the sample were different”?

- Can we determine how accurate our estimate is?

- In theory, we could collect a different sample and check how similar the
statistic we calculated is

- What if we can’t go back and collect more samples?



Bootstrap Method



Bootstrap

- A technique for simulating repeated random sampling

- The term “bootstrap” means to improve or lift yourself using your own
resources without external help

- From the phrase “to pull oneself up by one’s bootstraps”

- Bootstrap method tries to learn about the population using only the
sample itself without any outside (theoretical) distribution assumptions



The Bootstrap Method

- Suppose we have a large random sample from the population

- By the Law of Averages, it probably resembles the population from
which it’'s drawn

- We can treat it like a miniature version of the population

- We can replicate sampling from the population by sampling from the
sample

- To resample, draw at random with replacement the same number of
times as the original sample size



The Bootstrap Method

- Important to resample with replacement the same number of times as the
original sample

- Suppose we computed the original statistic based on n samples. We
need to compare it to another statistic also based on n samples

- Drawing without replacement gives the same sample back, so you need
to sample with replacement



Resamples

The Bootstrap
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Confidence Interval

Distribution of the

Resamples Statistic

Statistic
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Confidence Interval

- Interval of estimates of a parameter

- How confident we are that the parameter (the real value calculated from the
population) is likely to be within this interval

- Good if the parameter is within the interval, bad if it’s not
- Based on random sampling
- 95% confidence interval is the middle 95% of the distribution of estimates
- Can choose any percentage between 0 and 100

- Higher numbers correspond to a wider interval



Interpreting Confidence Interval

- The confidence interval helps us state how confident we are that our
sample statistic estimates (or contains) the true population parameter

- When we do bootstrapping and create, say, a 95% confidence interval for
the median, what we are doing is estimating the range of plausible
values for the true population median based on the sample data

- Confidence interval is a rough estimate of how large a parameter is.
Common mistake to use it for other purposes

- For example, a 95% confidence interval for an average age is not
saying we think 95% of the population is within that age



Relationship between Confidence Interval and P-value

- For a p-value cutoff of p%, we reject the null hypothesis if the value is not
within (100 — p)% confidence interval

- If you use a p% cutoff for the p-value and the null hypothesis is true, then
there is about a p% chance your test will conclude the alternative is true

- If the null hypothesis is true, (100 — p)% chance test agrees with the null

- (100 — p)% confidence interval says we’re (100 — p)% certain the
parameter iIs somewhere within the interval

- If the value is outside of the interval, we reject the null hypothesis



Relationship between Confidence Interval and P-value

- Example:
- Null hypothesis: Population average = x
- Alternative Hypothesis: Population average # x

- If x is not in our (100 — p)% interval, then we reject the null



Rejecting the nulli Cannot reject null
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Confidence Interval & P-Value Example

Null Hypothesis: You have a fair coin with
50% probability of getting heads or tails

Alternative: The coin Is biased

Your observed value for % heads is 65%

Let’s say your 95% confidence interval is
[45, 60]



Confidence Interval & P-Value Example

Null Hypothesis: You have a fair coin with  Questions:
50% probability of getting heads or tails

1. For a 5% p-value cutoff, can

Alternative: The coin is biased we reject the null?

Your observed value for % heads is 65%

2. For a 10% p-value cutoff, can

Let’s say your 95% confidence interval is |
we reject the null?

45, 60]



Confidence Interval & P-Value Example

Null Hypothesis: You have a fair coin with  Questions:

50% probability of getting heads or tails
1. For a 5% p-value cutoff, can

we reject the null?

e Yes, 65% is outside our
Your observed value for % heads is 65% confidence interval

Alternative: The coin Is biased

2. For a 10% p-value cutoff, can

Let’s say your 95% confidence interval is |
we reject the null?

45, 60]



Confidence Interval & P-Value Example

Null Hypothesis: You have a fair coin with  Questions:
50% probability of getting heads or tails

1. For a 5% p-value cutoff, can
we reject the null?

e Yes, 65% is outside our
Your observed value for % heads is 65% confidence interval

Alternative: The coin Is biased

2. For a 10% p-value cutoff, can
we reject the null?

* Yes, we expect the confidence
Interval to be even narrower, soO
65% would still be outside the

confidence interval

Let’s say your 95% confidence interval is
[45, 60]



Summary of Stats so far...



Hypothesis Testing

- Modeling expected outcomes under the null and comparing it to our observed

outcome
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Hypothesis Testing

- Modeling expected outcomes under the null and comparing it to our observed

outcome
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Hypothesis Testing

- Modeling expected outcomes under the null and comparing it to our observed
outcome

/ Midterm Exam Scores \
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Hypothesis Testing

- Modeling expected outcomes under the null and comparing it to our observed
outcome

/ Smoking vs Non-Smoking Mothers \
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Estimating a Parameter

- We want to estimate a population parameter from a sample statistic
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Next time

e Normal Distributions



