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Introduction to Computational Thinking and Data Science

Nov 10, 2025



Reminders
- Final Project Proposal Due Friday 

- Worth 10% of the final project grade


- Template is on the 1017 Courseworks


- HW 6 due next week Monday, Nov 17


- HW 7: Skip Question 4 about the survey


- Extra Credit (HW 5 Question 3) Due Monday, Nov 17


- Completely optional, no late submissions



Final Project Groups
- Please check the info on the 

1017 Courseworks is right


- If your final project group can 
attend one of the Thursday labs, 
consider switching


- Groups are overwhelming 
attending Wednesday labs 
Dec 3/4


- Email me if you want to switch



Lecture Outline
- AB Testing Review


- Confidence intervals


- Percentiles


- Estimations


- Bootstrapping


- Summary



Review: A/B Testing



Review: P-Value
P-value: Observed significance level


The P-value is the chance 

under the null hypothesis 

that the test statistic 

is equal to the value that was 
observed in the data 

or is even further in the direction of 
the alternative



A/B Testing

- Testing whether Group A and Group B have the same underlying 
distribution or not


- Null Hypothesis: The distributions of [test statistic] from both groups are 
the same 


- Any differences we observe are due to chance


- Alternative Hypothesis: The distributions are different


- If the distributions look different, it supports the alternative hypothesis



A/B Testing Process

- Under the null, if the Group A and Group B are the same, it doesn’t matter 
what label (A or B) we assign each item


- We expect the difference between the groups to be 0


- Permutation Test:


- Shuffle all group labels using shuttle(with_replacement = False)


- Compute the difference between the average of the two shuffled groups


- Compare the difference to our observed difference



A/B Testing Process

1. Write a function that 
calculates the test static 
for one simulation 
 
 

2. Repeat that process in a 
for loop many times


3. Plot the distribution and 
compare to our observed 
value



Confidence Intervals 
 
Textbook Chapter on Confidence Intervals 
Textbook Chapter on Using Confidence Intervals

https://inferentialthinking.com/chapters/13/3/Confidence_Intervals.html
https://inferentialthinking.com/chapters/13/4/Using_Confidence_Intervals.html


Confidence Interval
- Interval of estimates of a parameter


- Statistic tells us the estimate of a single parameter, confidence interval 
tells us a range of values of the estimated parameter


- “How often does our estimate capture the parameter”


- Based on the notion of percents, so helpful to understand what we mean 
by a percentile



Percentile

- The -th percentile of a collection is the smallest value in the collection that is at least 
as large as % of all the values


- Computing the -th percentile of a list of  values:


1. Sort the list


2. Compute how many elements  the % refers to





3. Return the -th smallest element (counting from 1)
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Percentile
Example: What is the 80th percentile for [12, 17, 6, 9, 7]?


1. Sort the list: [6, 7, 9, 12, 17]


2. Compute how many elements  the % refers to





3. Return the -th smallest element (counting from 1)


4th smallest element of [6, 7, 9, 12, 17] is 12

k p

k = ⌈ p
100

× n⌉ = ⌈ 80
100

× 5⌉ = ⌈ 4
5

× 5⌉ = 4

k
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percentile Function
- percentile(p, values_array) 

- Returns the smallest value in values_array that is at least as large as 
p% of the elements in the array


- p is always between 0 and  100



Example
Let s = [1, 3, 5, 7, 9] 

What would percentile(20, s) evaluate to?

percentile(p,array) 
returns the smallest value in 
array that is at least as large 
as p% of elements in the array
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More Examples percentile(p,array) 
returns the smallest value in 
array that is at least as large 
as p% of elements in the array

Let s = [1, 3, 5, 7, 9] 

Which of the following evaluate to True?


1. percentile(10, s) == 0 

False! Element is an element from the array 

2. percentile(39, s) == percentile(40, s) 

True! Both evaluate to 3 

3. percentile(40, s) == percentile(41, s) 

False. First value is 3 but the second one is 5
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Estimation



Estimation

- We use estimation to figure out the value of an unknown 
parameter

If entire population is known

Calculate parameter directly

If we only have access to 
a random sample

We calculate a statistic as an 
estimate of the parameter



Notebook Demo: SF Gov’t 
Salaries



Quantifying Uncertainty
- Our estimate depends on the sample we collected. How different would 

the estimate be if the sample were different?


- Can we determine how accurate our estimate is?


- In theory, we could collect a different sample and check how similar the 
statistic we calculated is


- What if we can’t go back and collect more samples?



Bootstrap Method



Bootstrap
- A technique for simulating repeated random sampling


- The term “bootstrap” means to improve or lift yourself using your own 
resources without external help


- From the phrase “to pull oneself up by one’s bootstraps”


- Bootstrap method tries to learn about the population using only the 
sample itself without any outside (theoretical) distribution assumptions



The Bootstrap Method
- Suppose we have a large random sample from the population


- By the Law of Averages, it probably resembles the population from 
which it’s drawn


- We can treat it like a miniature version of the population


- We can replicate sampling from the population by sampling from the 
sample 

- To resample, draw at random with replacement the same number of 
times as the original sample size



The Bootstrap Method

- Important to resample with replacement the same number of times as the 
original sample


- Suppose we computed the original statistic based on  samples. We 
need to compare it to another statistic also based on  samples


- Drawing without replacement gives the same sample back, so you need 
to sample with replacement

n
n



The Bootstrap

Population Sample

Resamples

?
We don’t know the 

entire population and 
thus can’t calculate 

the parameter directly
However, we can take 

a single sample…
…and generate lots 

of resamples



Sample

Resamples Statistic Distribution of the 
Statistic

Confidence Interval

median1

median2

median3



Confidence Interval
- Interval of estimates of a parameter


- How confident we are that the parameter (the real value calculated from the 
population) is likely to be within this interval


- Good if the parameter is within the interval, bad if it’s not 

- Based on random sampling


- 95% confidence interval is the middle 95% of the distribution of estimates


- Can choose any percentage between 0 and 100


- Higher numbers correspond to a wider interval



Interpreting Confidence Interval
- The confidence interval helps us state how confident we are that our 

sample statistic estimates (or contains) the true population parameter


- When we do bootstrapping and create, say, a 95% confidence interval for 
the median, what we are doing is estimating the range of plausible 
values for the true population median based on the sample data 

- Confidence interval is a rough estimate of how large a parameter is. 
Common mistake to use it for other purposes


- For example, a 95% confidence interval for an average age is not 
saying we think 95% of the population is within that age



Relationship between Confidence Interval and P-value

- For a p-value cutoff of %, we reject the null hypothesis if the value is not 
within % confidence interval


- If you use a % cutoff for the p-value and the null hypothesis is true, then 
there is about a % chance your test will conclude the alternative is true


- If the null hypothesis is true, % chance test agrees with the null


- % confidence interval says we’re % certain the 
parameter is somewhere within the interval


- If the value is outside of the interval, we reject the null hypothesis

p
(100 − p)

p
p

(100 − p)

(100 − p) (100 − p)



Relationship between Confidence Interval and P-value

- Example:


- Null hypothesis: Population average 


- Alternative Hypothesis: Population average 


- If  is not in our % interval, then we reject the null

= x

≠ x

x (100 − p)



Rejecting the null

Our x is outside the 95% confidence interval

Cannot reject null

Our x is inside the 95% confidence interval



Confidence Interval & P-Value Example
Null Hypothesis: You have a fair coin with 
50% probability of getting heads or tails


Alternative: The coin is biased 


Your observed value for % heads is 65%


Let’s say your 95% confidence interval is 
[45, 60]

Questions:


1. For a 5% p-value cutoff, can 
we reject the null?

• Yes - 65% is outside our 

confidence interval


2. For a 10% p-value cutoff, can 
we reject the null?

• Yes - we expect the 

confidence interval to be 
even narrower, so 65% would 
still be outside the confidence 
interval
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Summary of Stats so far…



Hypothesis Testing
- Modeling expected outcomes under the null and comparing it to our observed 

outcome

Swain v Alabama Alameda Jury

Observed Number Observed TVD

2 Categories 3+ Categories Numerical Data

Midterm Exam Scores

Observed Average



Hypothesis Testing
- Modeling expected outcomes under the null and comparing it to our observed 

outcome

Swain v Alabama Alameda Jury

Observed Number Observed TVD

2 Categories 3+ Categories Numerical Data

Midterm Exam Scores

Observed Average

It’s often not easy to say whether the observed 
outcome falls within our expectations…


How can we more precisely characterize the 
likelihood of observing an expected outcome?


p-value!



Hypothesis Testing
- Modeling expected outcomes under the null and comparing it to our observed 

outcome

p-value = 0.058

p-value & statistical 
significance


Process: 


- Calculate the area of the tail (to 
the left/right of our observed 
value)

Midterm Exam Scores



Hypothesis Testing
- Modeling expected outcomes under the null and comparing it to our observed 

outcome

Smoking vs Non-Smoking Mothers 
& Birthweight

p-value = 0

A/B Testing 

Compare the difference between 
two groups


Process: 


- Permutation test (shuffle labels)



Estimating a Parameter
- We want to estimate a population parameter from a sample statistic

Median Employee Salary

95% Confidence Interval: Median Salary between 
$125,745 and $140,318

Confidence Interval 

Lets us estimate a range for what 
we think the parameter’s value is


Process: 


- Bootstrap



Next time

• Normal Distributions


