

Upcoming Schedule

Date	Topic	Lab	Assignment
10/1	9 - Conditionals and Iteration	Lab 4 - Functions and Visualizations (Due 10/3) Courseworks	HW2 Due
10/6	10 - Probability and Sampling		HW4 - Probability, Simulation, Estimation (Due 10/15) Courseworks
10/8	11 - Models and Empirical Simulations	Lab 5 - Simulations (Due 10/10) Courseworks	HW3 Due
10/13	Programming/Python Review		
10/15	Midterm Review	No Lab	HW4 Due
10/20	Midterm Exam		
10/22	Special Topics - Bias in Al	No Lab	

Today

Lecture Outline

- Control Statements
 - For loops
- Randomness
- Probabilities
- Sampling

Control Statements

Control Statements

Control Statements modify if and/or how many times a block of code is executed in a program

Control Statements

- Two major types are if and for
 - if statements specify code that should be run conditioned on something being true
 - They can also specify if alternative code should be run otherwise
 - for loops allow executing code over each element in some sequence of items

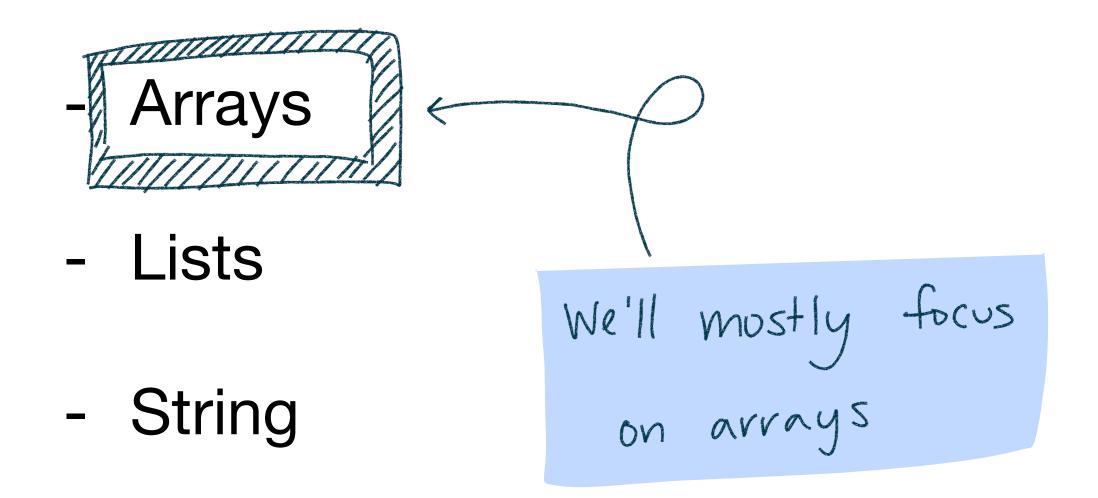
if statements

- Conditionals begin with an if followed by a boolean statement
 - Runs code based on whether a boolean statement evaluates to **True**
- Conditionals can include a combination of if, elif, and else clauses
 - Maximum of one if and one else

if statements

```
if statement 1:
  first code block
elif statement 2:
  second code block
elif statement 3:
  third code block
else:
  fourth code block
```

if statements


```
Runs if statement 1 == True
if statement 1:
   first code block
                               - Runs if statement_1!= True
AND statement_2 == True
elif statement 2:
   second code block
elif statement 3:
   third code block
                                  AND statement -3 == True
else:
   fourth code block
                              nothing above == True
```

Iteration

- Iteration means to repeat a process or steps
 - For example, coming up with a design, prototyping, testing, and then repeating these steps based on the outcome
- In programming we use this term to refer to executing code repeatedly over every element in a list/array/sequence/collection/...
 - The object being iterated over is referred to as an iterable

Iterables

- Formally, an iterable is any Python object capable of returning its members one at a time
- Iterables we've seen in this class include:


```
make_array('a','b','c','d')
array(['a', 'b', 'c', 'd'],
      dtype='<U1')
['a','b','c','d']
['a', 'b', 'c', 'd']
'abcd'
'abcd'
```

for Statements

- Executing a for runs code with each element in an iterable

```
for item in some array:
  print (item)
      code to evaluate in each iteration of the loop
```

```
for i in np.arange(4):
    print('iteration', i)
```

```
for i in np.arange(4):
    print('iteration', i)
```

```
np.arange(4)
array([0, 1, 2, 3])
```

```
for i in np.arange(4):
    print('iteration', i)

iteration 0
```

```
np.arange(4)
array([0, 1, 2, 3])
       i=0
```

```
for i in np.arange(4):
    print('iteration', i)

iteration 0
iteration 1
```

```
np.arange(4)
array([0, 1, 2, 3])
          i=1
```

```
for i in np.arange(4):
    print('iteration', i)

iteration 0
iteration 1
iteration 2
```

```
np.arange(4)
array([0, 1, 2, 3])
             i=2
```

```
for i in np.arange(4):
    print('iteration', i)

iteration 0
iteration 1
iteration 2
iteration 3
```

```
np.arange(4)
array([0, 1, 2, 3])
                 i=3
```

```
total = 0
for i in np.arange(4):
   total = total + i
   print(total)
```

```
np.arange(4)
array([0, 1, 2, 3])
```

```
total = 0
for i in np.arange(4):
    total = total + i
    print(total)
```

```
np.arange(4)
array([0, 1, 2, 3])
       i=0
```

```
total = 0
for i in np.arange(4):
    total = total + i
    print(total)

0
1
```

```
np.arange(4)
array([0, 1, 2, 3])
          i=1
```

```
total = 0
for i in np.arange(4):
    total = total + i
    print(total)
```

```
np.arange(4)
array([0, 1, 2, 3])
             i=2
```

```
total = 0
for i in np.arange(4):
    total = total + i
    print(total)
```

```
np.arange(4)
array([0, 1, 2, 3])
                 i=3
```

Simulation

- 1. Figure out what you want to simulate
 - Example: Outcomes of a coin toss

- 1. Figure out what you want to simulate
 - Example: Outcomes of a coin toss
- 2. Write a function whose output is the outcome of a single simulation

- 1. Figure out what you want to simulate
 - Example: Outcomes of a coin toss

- 2. Write a function whose output is the outcome of a single simulation
- 3. Repeat the simulation for some number of iterations
 - Keep track of the results of every iteration in an array

- 1. Figure out what you want to simulate
 - Example: Outcomes of a coin toss

- 2. Write a function whose output is the outcome of a single simulation
- 3. Repeat the simulation for some number of iterations
 - Keep track of the results of every iteration in an array
- 4. Add results array to a table so you can plot the results

Random Selection

```
import numpy as np
```

To select uniformly at random from array some array

```
- np.random.choice(some_array)
```

To select n number of random elements from array some array

```
- np.random.choice(some array, n)
```

Note: Random does not mean arbitrary.

We mean each output has some chance of happening (probability)

Appending Arrays

import numpy as np

Return a copy of array 1 where value is added onto the end

```
np.append(array 1, value)
```

Returns an array with elements of array_1 followed by elements of array_2

```
np.append(array 1, array 2)
```

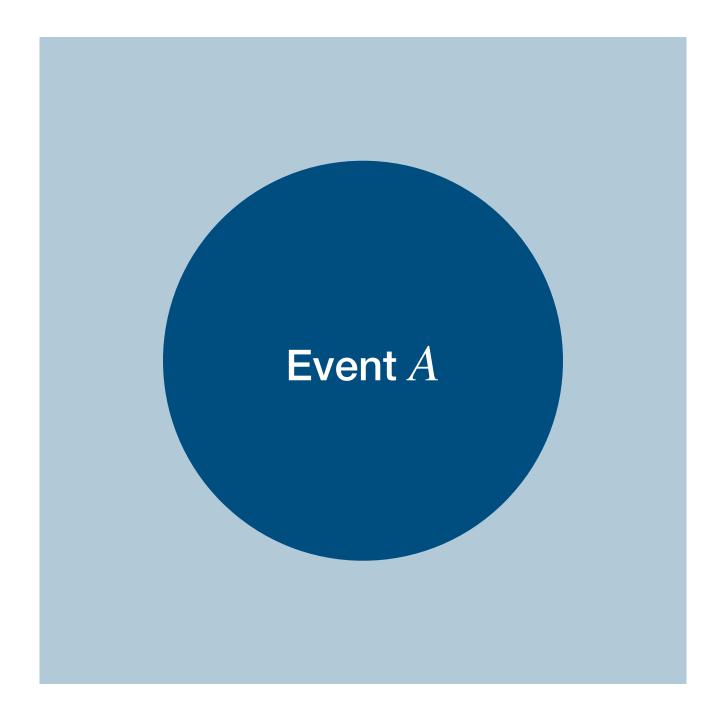
Probability

Probability

P(A) = Probability of event A happening

$$- P(A) = 0$$

- 0% chance of event A happening
- Event A is impossible


-
$$P(A) = 1$$

- 100% chance of event A happening
- Event A is certain

Complements

If an event has a chance of happening N, then the chance it *doesn't* happen is 1-N

- e.g., if chance of happening is 70%, chance of not happening is 30%

Equally Likely Outcomes

Assuming all outcomes are equally likely:

$$\mathsf{P}(A) = \frac{\mathsf{number\ of\ outcomes\ that\ make\ } A\ \mathsf{happen}}{\mathsf{total\ number\ of\ outcomes}}$$

Exercise A

- I have three cards:

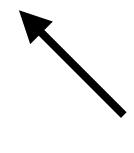
Ace of Hearts, King of Diamonds, and Queen of Spades

- I shuffle them and draw two cards at random without replacement
- What's the chance that I get the Queen followed by the King?

Exercise A

What's the chance that I get the Queen followed by the King?

- Let A be event "Queen then King"

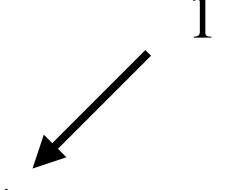

$$P(A) = \frac{\text{number of outcomes that make } A \text{ happen}}{\text{total number of outcomes}}$$

Exercise A

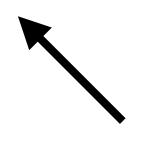
What's the chance that I get the Queen followed by the King?

- Let A be event "Queen then King"

$$P(A) = \frac{\text{number of outcomes that make } A \text{ happen}}{\text{total number of outcomes}}$$



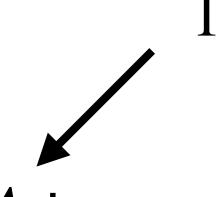
Draw 1	Draw 2	
Ace	Queen	
Ace	King	
Queen	King	
Queen	Ace	
King	Ace	
King	Queen	


Exercise A

What's the chance that I get the Queen followed by the King?

- Let A be event "Queen then King"

$$P(A) = \frac{\text{number of outcomes that make } A \text{ happen}}{\text{total number of outcomes}}$$



Draw 1	Draw 2 Queen King	
Ace		
Ace		
Queen	King	
Queen	Ace	
King	Ace	
King		

Exercise A

What's the chance that I get the Queen followed by the King?

- Let A be event "Queen then King"

$$P(A) = \frac{\text{number of outcomes that make } A \text{ happen}}{\text{total number of outcomes}}$$

Draw 1	Draw 2	
Ace	Queen	
Ace	King	
Queen	King	
Queen	Ace	
King	Ace	
King	Queen	

Multiplication Rule

The chance that two events A and B both happen:

Exercise A (another way)

What's the chance that I get the Queen followed by the King?

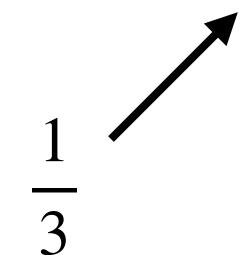
Ace

- Let A be event "Queen in the first draw"
- Let B be event "King in the second draw"

King

 $P(A \text{ and } B) = P(A) \times P(B \text{ happens given } A \text{ happens})$

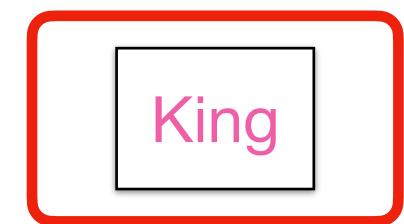
Queen


Exercise A (another way)

What's the chance that I get the Queen followed by the King?

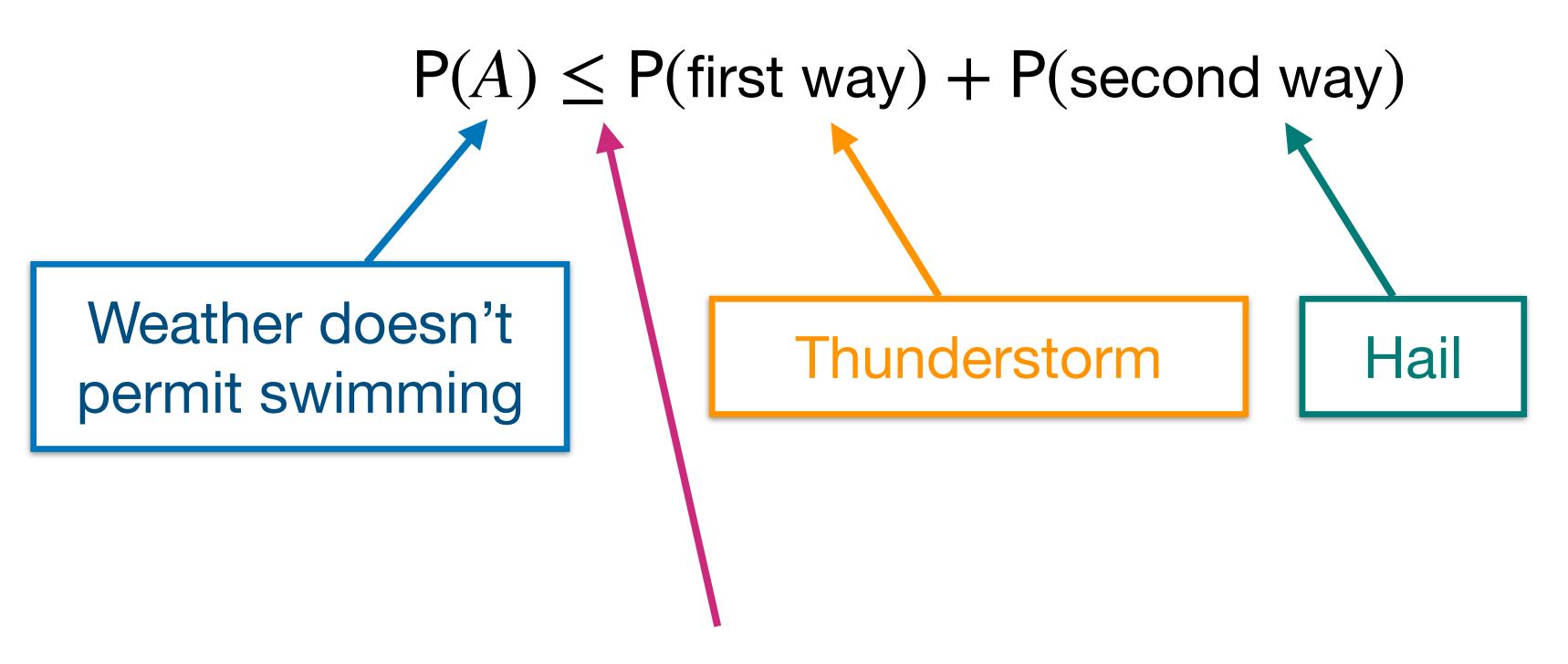
- Let A be event "Queen in the first draw"
- Let B be event "King in the second draw"

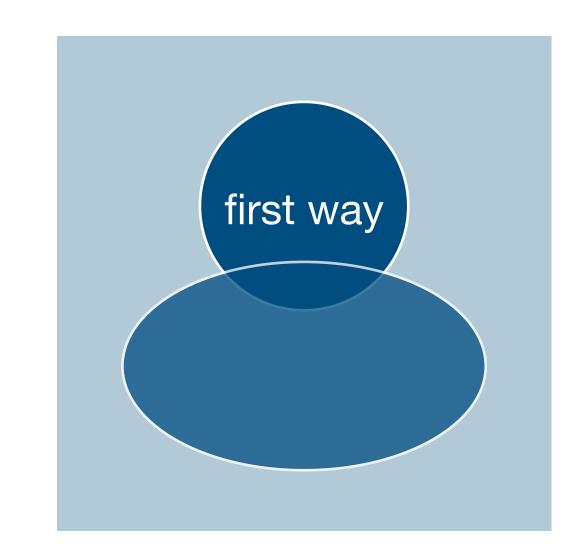
Exercise A (another way)


What's the chance that I get the Queen followed by the King?

- Let B be event "King in the second draw"

$$\frac{1}{3} \quad \frac{1}{2}$$


Multiplication Rule


The chance that two events A and B both happen:

- The answer is less than or equal to each of the two chances being multiplied
- The more conditions you have to satisfy, the less likely you are to satisfy them all

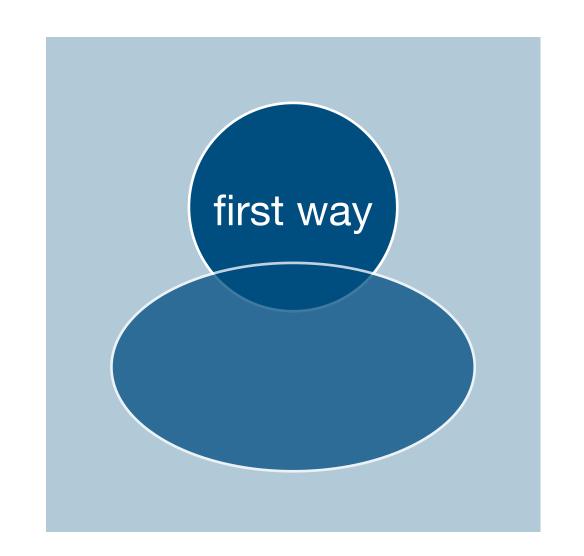
Addition Rule

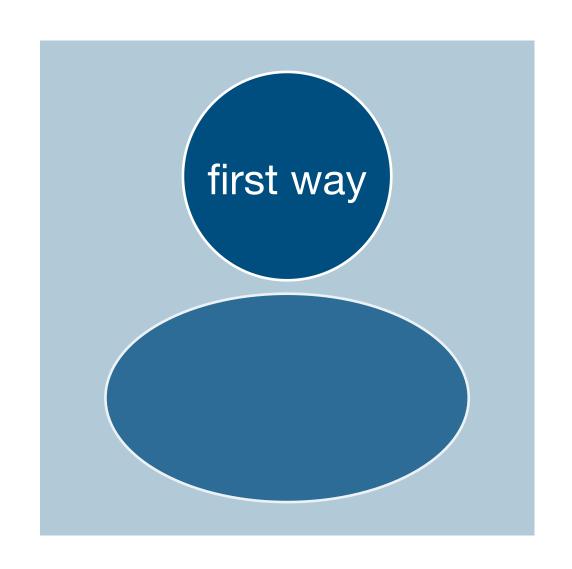
- If event A can happen in exactly one of two ways, then

Probability of A is possibly less than the sum

because it's possible for thunder and hail to happen at the same time

Addition Rule


- If event A can happen in exactly one of two ways, then


$$P(A) \le P(first way) + P(second way)$$

- If the two ways are independent (i.e., no overlap), then

$$P(A) = P(first way) + P(second way)$$

In this class, we'll mostly deal with independent events

Exercise B

- I have three cards:

Ace of Hearts, King of Diamonds, and Queen of Spades

- I shuffle them and draw two cards at random without replacement
- What's the chance that one is a Queen and one is a King?

What's the chance that one is the Queen and one is the King?

Draw 1	Draw 2	
Ace	Queen	
Ace	King	
Queen	King	
Queen	Ace	
King	Ace	
King	Queen	

What's the chance that one is the Queen and one is the King?

$$\mathsf{P}(A) = \dfrac{\mathsf{number} \ \mathsf{of} \ \mathsf{outcomes} \ \mathsf{that} \ \mathsf{make} \ A \ \mathsf{happen}}{\mathsf{total} \ \mathsf{number} \ \mathsf{of} \ \mathsf{outcomes}}$$

Draw 1	Draw 2	
Ace	Queen	
Ace	King	
Queen	King	
Queen	Ace	
King	Ace	
King	Queen	

What's the chance that one is the Queen and one is the King?

$$P(A) = \frac{\text{number of outcomes that make } A \text{ happen}}{\text{total number of outcomes}}$$
$$= \frac{2}{6}$$

	Draw 1	Draw 2
	Ace	Queen
	Ace	King
	Queen	King
	Queen	Ace
	King	Ace
	King	Queen

What's the chance that one is the Queen and one is the King?

$$P(A) = \frac{\text{number of outcomes that make } A \text{ happen}}{\text{total number of outcomes}}$$
$$= \frac{2}{6}$$
$$= \frac{1}{3}$$

	Draw 1	Draw 2
	Ace	Queen
	Ace	King
	Queen	King
	Queen	Ace
	King	Ace
	King	Queen

What's the chance that one is the Queen and one is the King?

- Let A be drawing a Queen and King

P(A) = P(first way) + P(second way)

	Draw 1	Draw 2
	Ace	Queen
	Ace	King
Queen Queen King	King	
	Queen	Ace
	Ace	
	King	Queen

What's the chance that one is the Queen and one is the King?

```
P(A) = P(first way) + P(second way)
= P(Queen then King) + P(King then Queen)
```

	Draw 1	Draw 2
	Ace	Queen
	Ace	King
	Queen	King
	Queen	Ace
	King	Ace
	King	Queen

What's the chance that one is the Queen and one is the King?

$$P(A) = P(\text{first way}) + P(\text{second way})$$

$$= P(\text{Queen then King}) + P(\text{King then Queen})$$

$$= \frac{1}{6} + \frac{1}{6}$$

	Draw 1	Draw 2
	Ace	Queen
	Ace	King
Queen Queen King	King	
	Queen	Ace
	Ace	
	King	Queen

What's the chance that one is the Queen and one is the King?

$$P(A) = P(\text{first way}) + P(\text{second way})$$

$$= P(\text{Queen then King}) + P(\text{King then Queen})$$

$$= \frac{1}{6} + \frac{1}{6}$$

$$= \frac{1}{2}$$

	Draw 1	Draw 2
	Ace	Queen
	Ace	King
Queen	King	
	Queen	Ace
	King	Ace
	King	Queen

A population has 100 cats including Ruby and Gertrude. We sample 2 cats at random without replacement.

What are the following probabilities?

- 1. P(neither Ruby nor Gertrude are in the sample)
- 2. P(both Ruby and Gertrude are in the sample)

Pictured: Ruby and Gertrude

A population has 100 cats including Ruby and Gertrude. We sample 2 cats at random without replacement.

1. P(neither Ruby nor Gertrude are in the sample)

A population has 100 cats including Ruby and Gertrude. We sample 2 cats at random without replacement.

1. P(neither Ruby nor Gertrude are in the sample)

First pick:

100 cats

98 are not Ruby or Gertrude

$$4 > P(A) = \frac{98}{100}$$

 $P(A \text{ and } B) = P(A) \times P(B \text{ happens given } A \text{ happens})$

A: Gertrude and Ruby are not chosen in the first pick

A population has 100 cats including Ruby and Gertrude. We sample 2 cats at random without replacement.

1. P(neither Ruby nor Gertrude are in the sample)

First pick:

100 cats

98 are not Ruby or Gertrude $4 > P(A) = \frac{98}{100}$

 $P(A \text{ and } B) = P(A) \times P(B \text{ happens given } A \text{ happens})$

A: Gertrude and Ruby are not chosen in the first pick

B: Gertrude and Ruby are not chosen in the second pick

A population has 100 cats including Ruby and Gertrude. We sample 2 cats at random without replacement.

1. P(neither Ruby nor Gertrude are in the sample)

$$= \frac{98}{100} \times \frac{97}{99}$$

$$= 0.96$$

First pick:

A population has 100 cats including Ruby and Gertrude. We sample 2 cats at random without replacement.

2. P(both Ruby and Gertrude are in the sample)

P(A) = P(first way) + P(second way)

A population has 100 cats including Ruby and Gertrude. We sample 2 cats at random without replacement.

2. P(both Ruby and Gertrude are in the sample)

A population has 100 cats including Ruby and Gertrude. We sample 2 cats at random without replacement.

2. P(both Ruby and Gertrude are in the sample)

A population has 100 cats including Ruby and Gertrude. We sample 2 cats at random without replacement.

2. P(both Ruby and Gertrude are in the sample)

$$P(A) = P(first way) + P(second way)$$

$$= P(Ruby then Gertrude) + P(Gertrude then Ruby)$$

$$= \frac{1}{100} \times \frac{1}{99} + \frac{1}{100} \times \frac{1}{99}$$

$$= 0.0002$$

Sampling

Sample

- A subset of your population you choose to utilize in your analysis
- Picking samples is a fundamental part of Data Science
 - Did you sample enough / collect enough data?
 - Is the data representative?

Deterministic vs Random Samples

- Deterministic Sample:
 - Sampling scheme doesn't involve chance, results are always the same
 - Example: cat tbl.where('Coloring', 'tuxedo')
- Random Sample:
 - Elements are chosen probabilistically
 - Selection probabilities for each element are known before the sample is drawn
 - Not all individuals or groups have to have equal chance of being selected
 - Example: np.random.choice (np.arange (10))

Convenience Sampling

Random sampling requires knowing the probability of selection ahead of time

- Not fully controlling what is picked (e.g., "choose the first 10 people to walk by") doesn't necessarily make it a random sample

If you can't figure out ahead of time

- what's the population
- what's the chance of selection, for each group in the population

then it is a sample of convenience and not a random sample!

Next Time

Date

Topic

10/1	9 - Conditionals and Iteration	Lab 4 - Functions and Visualizations (Due 10/3) Courseworks	HW2 Due
10/6	10 - Probability and Sampling		HW4 - Probability, Simulation, Estimation (Due 10/15) Courseworks
10/8	11 - Models and Empirical Simulations	Lab 5 - Simulations (Due 10/10) Courseworks	HW3 Due
10/13	Programming/Python Review		
10/15	Midterm Review	No Lab	HW4 Due
10/20	Midterm Exam		
10/22	Special Topics - Bias in Al	No Lab	

Lab

Assignment