
Copyright © 2025 Barnard College

Lecture 9: Conditionals and Iteration

1

COMS BC1016

Introduction to Computational Thinking and Data Science

Oct 1, 2025



Upcoming Schedule



Lecture Outline
- Comparison Operators


- Control Statements


- If statements


- For loops


- Randomness



Groups, Pivot Tables, join



Group vs Pivot
Group


- One combo of grouping variables 
per row


- Any number of grouping variables


- Aggregate values of all other 
columns in the table


- Missing combos are absent

Pivot


- One combo of grouping variables per 
entry


- Two grouping variables: columns and 
rows


- Aggregate values of values column 

- Missing combos = 0 (or empty string)



Joining Two Tables
Sometimes data about the same individuals are in different tables


- join combines the two datasets together


- Entries that do not appear in both tables are not included in the new table


To combine entries from table1 and table2 based on columns c1 and c2


- table1.join(c1, table2, c2)



join Example

bubble_teas discounts



join Example
bubble_teas discounts

bubble_teas.join('cafe', discounts, 'location')

Match rows in 
this table…

…using values in 
this column …

…with rows in this 
second table…

…using values in 
this column.



join Example
bubble_teas discounts

bubble_teas.join('cafe', discounts, 'location')

Match rows in this 
table…

…using values in 
this column …

…with rows in this 
second table…

…using values in 
this column.

output:



join Example
bubble_teas discounts

Match rows in this 
table…

…using values in 
this column …

…with rows in this 
second table…

…using values in 
this column.

output:

bubble_teas.join('cafe', discounts, 'location')



Booleans and Comparisons



Boolean Data Type

- Booleans are data types for truth values: True or False 

- True is equivalent to 1 

- False is equivalent to 0 

- bool(x) turns x into a boolean


- e.g., bool(1) evaluates to True and bool(0) evaluates to False



Comparison Operators
Operation Meaning

> greater than 

>= greater than or equal to
< less than
<= less than or equal to
== equal to
!= not equal to



Comparison Operators

Example Result Explanation

3 > 2 True 3 is greater than 2

3 > 3 False 3 is not (strictly) greater than 3

4 <= 4 True 4 is less than or equal to 4



Comparison Operators

Example Result Explanation

'4’ == 4 False ‘4’ is a string and 4 is an int

3 - 2 == 4 - 3 True 3-2 equals 1 and 4-3 equals 1; 
1 equals 1

2 != 2 False 2 is not not equal to 2



Comparisons with Arrays
- Single values can be compared against each element in an array


- Comparing two arrays will compare element-by-element



and, or, and not

- You can combine conditional statements using and & or


- and will return True if all expressions are True (and False otherwise)


- or will return True if any expressions is True (and False otherwise)


- You can negate a boolean value using not


- not True will evaluate to False


- not False will evaluate to True



and, or, and not
Example Result

True and True True 

True and False False 

True or False True

False or False False

not False True



Aggregating Comparisons

- Summing an array or list of bool values will count the True values only

Example Result

True + False + True 2

1 + 0 + 1 2

sum([True, False, True]) 2



Control Statements



Control Statements

Control Statements modify if and/or how many times a 
block of code is executed in a program



Control Statements

- Two major types are if and for


- if statements specify code that should be run 
conditioned on something being true


- They can also specify if alternative code should be run 
otherwise


- for loops allow executing code over each element in 
some sequence of items



if statements

- Conditionals begin with an if followed by a boolean statement 

- Runs code based on whether a boolean statement evaluates to 
True


- Conditionals can include a combination of if, elif, and else clauses


- Maximum of one if and one else




if statements

if statement_1: 

first_code_block 

elif statement_2: 

second_code_block 

elif statement_3: 

third_code_block 

else: 

fourth_code_block



if statements

if statement_1: 

first_code_block 

elif statement_2: 

second_code_block 

elif statement_3: 

third_code_block 

else: 

fourth_code_block



Iteration
- Iteration means to repeat a process or steps


- For example, coming up with a design, prototyping, testing, and then 
repeating these steps based on the outcome


- In programming we use this term to refer to executing code repeatedly 
over every element in a list/array/sequence/collection/…


- The object being iterated over is referred to as an iterable



Iterables
- Formally, an iterable is any Python object capable of returning its 

members one at a time


- Iterables we’ve seen in this class include:


- Arrays


- Lists


- String



for Statements

- Executing a for runs code with each element in an iterable

for item in some_array: 

print(item)



Random Selection



Random Selection
import numpy as np 

To select uniformly at random from array some_array


- np.random.choice(some_array) 

To select n number of random elements from array some_array


- np.random.choice(some_array, n)



Appending Arrays



Appending Arrays
import numpy as np 

Return a copy of array_1 where value is added onto the end


np.append(array_1, value) 

Returns an array with elements of array_1 followed by elements of array_2


np.append(array_1, array_2)



Next Time

• Chance and Sampling


